

产品规格说明书

Product Data Sheet

A0S373xx

WEB | www.aossemi.cn q

B源管理IC 通信接口芯片

MOSFETs

运算放大器

显示驱动

MCU单片机

光电器件

AOS373

Octal Transparent D-Type Latches With 3-State Outputs

DESCRIPTIONS

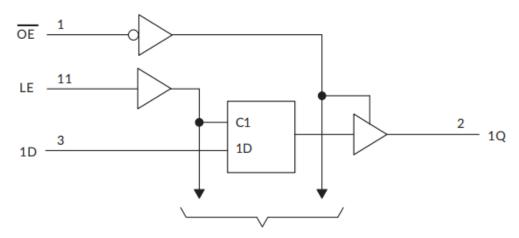
These 8-bit latches feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. The eight latches of the AOS373 devices are transparent D-type latches. While the latch -enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels that were set up at the D inputs.

An output-enable (OE) input places the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pull up components. OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered while the outputs are off.

FEATURES

Wide Operating Voltage Range of 1.65V to 5.5V High-Current 3-State True Outputs Can Drive Up To 15 LSTTL Loads Low Power Consumption, $80\mu A$ Max $I_{cc} \pm 6mA$ Output Drive at 4.5V Low Input Current of $1\mu A$ Max Eight High-Current Latches in a Single Package Full Parallel Access for Loading Micro Size Packages: TSSOP20, SOP20

APPLICATIONS


Network Switches TV Set-top Boxes Motor Drives

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
A0S373	TSS0P20	6.50mm×4.40mm
AU3373	SOP20	12.80mm×7.50mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Logic Diagram

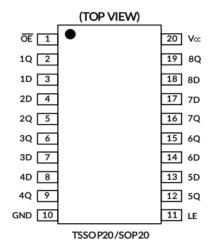
To Seven Other Channels

Function Table

	INPUTS					
0E	LE	D	Q			
L	Н	Н	Н			
L	Н	L	L			
L	L	X	Qo			
Н	X	X	Z			

NOTE:

H=High voltage level L=Low voltage level X=don't care


PACKAGE/ORDERING INFORMATION(1)

PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKI NG ⁽²⁾	MSL ⁽³⁾	PACKAGE OPTION
A00272	A0S373XTSS20	-40℃~+125℃	TSS0P20	A0S373	MSL3	Tape and Reel, 4000
A0S373	A0S373XS20	-40℃~+125℃	SOP20	A0S373	MSL3	Tape and Reel, 1500

- (1) This information is the most current data available for the designated devices. This data is subject to change without noticeand revision of this document. For browser -based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME	I/O TYPE(1)	FUNCTI ON
TSS0P20/S0P20			
1	0E	I	3-state output enable input (active LOW)
2, 5, 6, 9, 12, 15, 16, 19	nQ	0	3-state latch output
3, 4, 7, 8, 13, 14, 17, 18	nD	I	Data input
10	GN	Р	Ground
11	0E	I	Latch enable input (active HIGH)
20	Vcc	Р	Supply voltage

(1) I = i nput, 0 = output, P = power.

Specifications Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
Vcc	Supply volta	age range	-0.5	6.5	V
Lik	Input clamp current ⁽²⁾	Vi<0 or Vi>Vcc		± 20	mA
I 0K	Output clamp current ⁽²⁾	Vo<0 or Vo>Vcc		± 20	mA
I 0	Continuous output current Vo=OV to Vcc			± 25	mA
	Continuous current	through Vcc or GND		50	mA
	Dealtons thermal impedance(3)	TSS0P20		40	°C/W
JA	Package thermal impedance ⁽³⁾	SOP20		40	C/W
TJ	Junction tem	-40	150	$^{\circ}$	
Tstg	Storage tem	-65	150	$^{\circ}$	

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The package thermal impedance is calculated in accordance with JESD-51.
- (4) The maximum power dissipation is a function of $T_{J(MAX)}$, R_{JA} , and T_{A} . The maximum allowable power dissipation at any ambient temperature is $P_{D} = (T_{J(MAX)} T_{A}) / R_{JA}$. All numbers apply for packages soldered directly onto a PCB.

ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
	Flooring to L'	Human-Body Model (HBM), MIL-STD-883K METHOD 3015.9	± 2000	
V(ESD)	Electrostatic discharge	Charged-Device Model (CDM), ANSI/ESDA/JEDEC JS-002-2018	± 1000	V
	ui schai ge	Machine Model (MM), JESD22-A115C (2010)	± 200	

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because Very small parametric changes could cause the device not to meet its published specifications.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (TYP values are at T_A = +25°C, Full=-40°C to 125°C, unless otherwise noted.)

AOS373

Recommended Operating Conditions

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
Supply voltage	Vcc	Operating	1.65	5.5	
		Vcc=1.65V	1. 15		
High-level input	W	Vcc=3.3V	2.3		
voltage	Vih	Vcc=4. 5V	3. 2		
		Vcc=5. 5V	3.85		
		Vcc=1. 65V		0.5	V
Low-level input	VIL	Vcc=3.3V		1	
vol tage '		Vcc=4.5V		1.3	
		Vcc=5.5V		1.65	
Input voltage	Vı		0	Vcc	
Output voltage	Vo		0	Vcc	
		Vcc=1. 65V		30	
Input transition	. ,	Vcc=3.3V		20	
Input transition rise or fall	t/ v	Vcc=4.5V		10	ns
		Vcc=5.5V		5	
Operating temperature	Та		-40	125	${\mathbb C}$

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

AOS373

DC Characteristics

PARAMETER	TEST CONDITIONS	Vcc	TEMP	MI N ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
		Vcc=1. 65V		1.55			
	I 20 A	Vcc=3.3V		3. 2			
Voh	I он=-20µ А	Vcc=4.5V	Full	4.4			
V 0H		Vcc=5.5V	ruii	5. 7			
	I он=-6. OmA	Vcc=4.5V		3. 7			
	I он= - 7. 8mA	Vcc=5.5V		4.7			
		Vcc=1. 65V				0.1	.,,
	1 20	Vcc=3.3V				0.1	- V
V	I он=-20µ А	Vcc=4.5V	FL			0.1	
Vol		Vcc=5.5V	Full			0.1	
	I oH=-6. OMA	Vcc=4.5V				0.4	
	I он= - 7. 8mA	Vcc=5.5V				0.4	
	V F FV an OND	F FV	25℃		± 0.1	± 1	
lı .	V ₁ =5.5V or GND	5.5V	Full			± 2	
1	V OV an OND OF V	F FV	25℃			± 1	
l oz	Vo=OV or GND, OE=ViH	5.5V	Full			± 10	
1		1 /5// +0 5 5//	25℃			8	μA
I cc	V ₁ =5.5V or GND, I ₀ =0	1.65V to 5.5V	Full			80	
Ci		3. 3V	+25℃		4	10	pF

- (1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.
- (2) Limits are 100% production tested at 25° C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

AOS373

Timing Requirements

over recommended operating free-air temperature range ($T_A=+25^{\circ}C$, unless otherwise noted)⁽¹⁾

	PARAMETER		V	Vcc=	1.8V±0.	15V	Vcc=2.5V	± 0. 2V	UNUT
			Vcc	MIN	TYP	MAX	MIN	MAX	UNIT
			1. 65			6		5	
fdock	Clock frequency		3.3			18		15	MHz
I dock	Crock Trequency		4.5			31		25	- IVITZ
			5.5			33		27	
			1.65	40	10		60		
+	tw pulse width	LE HIGH	3.3	20	5		30		
Lw			4.5	13	3		19.5		
				5.5	12	3		18	
			1. 65	5	-8		7.5		
+	cot up timo	nD +o 15	3.3	5	-3		7.5		no
tsu	set-up time	nD to LE	4.5	5	-2		7.5		ns
			5.5	5	-2		7.5		
			1.65	35	10		52.5		
+.	th hold time nD	nD +o 15	3.3	15	3		22.5		
Lh		nD to LE	4.5	8	2		12		
			5.5	7	2		10.5		

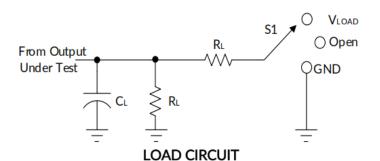
⁽¹⁾ This parameter is ensured by design and/or characterization and is not tested in production.

Switching Characteristics

over recommended operating free-air temperature range ($T_A=+25\,^{\circ}\text{C}$, unless otherwise noted) (1)

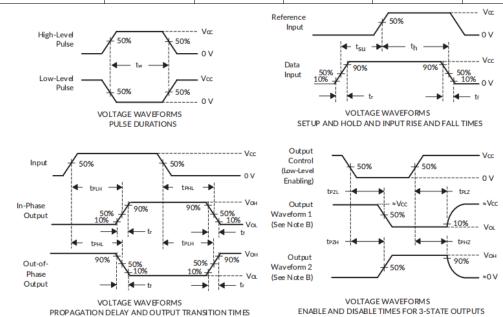
	PARAMETER		V	V _{CC} T _A =+25°C			T _A =-40°	C	°C UNIT
	PARAMETER		VCC	MIN	TYP	MAX	MIN	MAX	UNII
			1.65	6	12		2		
£			3.3	18	30		15		MII-
fdock			4.5	31	50		25		MHz
			5.5	33	55		27		
			1.65		23	34.5		39	
	~D	~ 0	3.3		7.5	11.5		13	
	nD	nQ	4.5		6.5	10		11	
+ .			5.5		6.5	10		11	
t _{pd}			1.65		41	61.5		70	
	l E	LE nQ	3.3		15	22.5		25.5	
	LL		4.5		12.5	19		21.5	
			5.5		12.5	19		21.5	
			1.65		27.5	41.5		47	
+	0E	nQ	3.3		10.5	16		18	nc
ten	UE	ΠQ	4.5		9.5	14.5		16.5	ns
			5.5		9	13.5		15.5	
			1.65		21.5	32.5		37	
tdis	0E	nQ	3.3		11	16.5		19	
Lais	OE.	ΠQ	4.5		8.5	13		14.5	
			5.5		8	12		14	
			1.65		5	30		45	
+.	nQ	n0	3.3		2.7	15		22	
tt		ΠQ	4.5		2.5	10		15	
			5.5		2.5	10		15	

(1) This parameter is ensured by design and/or characterization and is not tested in production.


Operating Characteristics

T_A=25℃

	PARAMETER	TEST CONDITIONS	TYP	UNIT
CPD	Power dissipation capacitance per flip-flop	No Load	35	pF



Parameter Measurement Information

TEST	S1
t _{pd}	0pen
tplz/tpzl	VLOAD
tpHz∕tpZH	GND

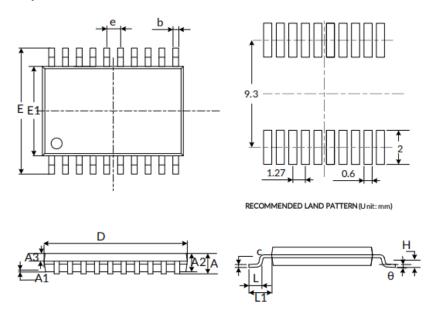
Vcc	Vı	VM	CL	RL	V _{TP}
$1.8V \pm 0.15V$	Vcc	Vcc/2	30pF	1k	0. 15V
$2.5V\pm0.2V$	Vcc	Vcc/2	30pF	500	0. 15V
3. 3V ± 0. 3V	Vcc	1.5V	50pF	500	0. 3V
5V ± 0.5V	Vcc	Vcc/2	50pF	500	0. 3V


- NOTES: A. C_L includes probe and test-fixture capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.

 Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_0 = 50$, tr = 6 ns, tf = 6 ns.
 - D. The outputs are measured one at a time with one input transition per measurement.
 - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - F. t_{PZL} and t_{PZH} are the same as t_{en} .
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .

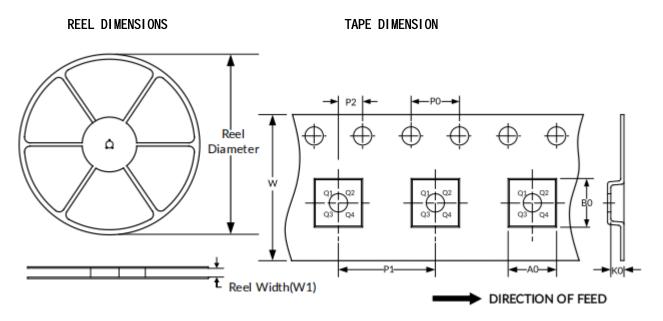
Figure 1. Load Circuit and Voltage Waveforms

PACKAGE OUTLINE DIMENSIONS TSSOP20(4)



Combal	Dimensions Ir	n Millimeters	Dimensions In Inches			
Symbol	Mi n Max		Min	Max		
A ⁽¹⁾		1. 200		0.047		
A1	0.050	0. 150	0.002	0.006		
A2	0.800	1. 050	0.031	0.041		
А3	0.390	0.490	0.015	0. 020 0. 011 0. 007		
b	0.200	0. 290	0.008			
С	0.130	0.170	0.005			
D ⁽¹⁾	6. 400	6.600	0. 252	0. 260		
E ⁽¹⁾	4. 300	4. 500	0. 169	0. 177		
E1	6. 200	6.600	0. 244	0. 260		
е	0.650((BSC) (2)	0.026((BSC) (2)		
L	0.450	0.750	0.018	0.030		
Н	0. 250	(TYP)	0. 010	(TYP)		
	0°	8°	0°	8°		
L1	1.00(REF) (3)	0.039(REF) ⁽³⁾			

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. REF is the abbreviation for Reference.
- 4. This drawing is subject to change without notice.


S0T363(SC70-6)(3)

Complete I	Dimensions In	n Millimeters				
Symbol	Mi n	Max	Min	Max		
A ⁽¹⁾		2. 650		0. 104		
A1	0.100	0.300	0.004	0. 012 0. 093 0. 042		
A2	2. 250	2. 350	0.089			
А3	0.970	1.070	0.038			
b	b 0.390		0.015	0. 019		
С	0. 250	0. 290	0.010	0. 011 0. 508		
D ⁽¹⁾	12.700	12. 900	0.500			
E ⁽¹⁾	10. 100	10.500	0.398	0.413		
E1 ⁽¹⁾	7.400	7. 600	0. 291	0. 299		
е	1. 270((BSC) (2)	0. 050 (BSC) (2)			
L	0.700	1.000	0.028	0.039		
Н	0. 250(TYP)		0.010(TYP)			
	0°	8°	0°	8°		
L1	1.400((REF) (3)	0.055(REF) ⁽³⁾			

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. REF is the abbreviation for Reference.
- 4. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Di ameter	Reel Width(mm)	AO (mm)	BO (mm)	KO (mm)	PO (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TSS0P20	13' '	12.4	6. 75	6. 95	1. 20	4.0	8.0	2.0	16.0	Q1
SOP20	13' '	24.4	10. 75	13.55	2. 65	4.0	12.0	2.0	24.0	01

- 1. All dimensions are nominal.
- 2. Plastic or metal protrusions of 0.15mm maximum per side are not included.