

产品规格说明书

Product Data Sheet

AOS245Txx

WEB | www.aossemi.cn q

も源管理IC 通信接口芯片

LDO稳压器

MOSFETs

运算放大器

显示驱动

MCU单片机

光电器件

AOS245T

Octal Bus Transceiver with 3-State Outputs

DESCRIPTIONS

The AOS245T is designed for asynchronous communication between two data buses. The logic levels of the directioncontrol (DIR) input and the output-enable ($\overline{\text{OE}}$) input activate either the B-port outputs or the A-port outputs or place both output ports into the high-impedance mode. The device transmits data from the A bus to the B bus when the B-port outputs are activated, and from the B bus to the A bus when the A-port outputs are activated . The input circuitry on both A and B ports is always active and must have a logic HIGH or LOW level applied to prevent excess I_{CC} and I_{CCZ} .

This device is fully specified for partial-power-down applications using I_{OFF} . The I_{OFF} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

The V_{CC} isolation feature ensures that if either V_{CC} input is at GND, all outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{∞} through a pullup resistor, the minimum value of the resistor is determined by the current-sinking capability of the driver.

It operates over an ambient temperature range of $-40\,^{\circ}\mathrm{C}$ to $+125\,^{\circ}\mathrm{C}$.

FEATURES

Power-Supply Range: 2V to 5.5V

 V_{CC} Isolation: If V_{CC} is at GND, Both Ports are in the High-

Impedance State

Loff: Supports Partial-Power-Down Mode Operation

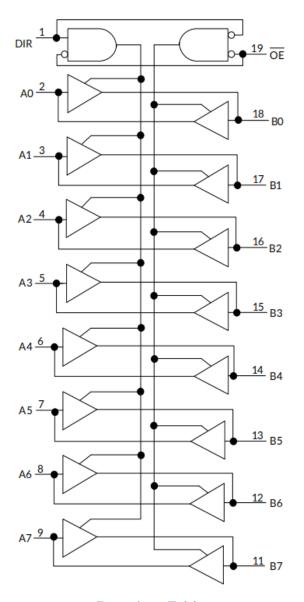
Inputs are TTL-voltage compatible Extended Temperature: $-40^{\circ}C$ to $+125^{\circ}C$ Micro Size Packages: TSSOP20, SOP20

APPLICATIONS

Factory Automation and Control Grid Infrastructure Multi-Function Printers

Motor Drives

Telecom Infrastructure


Device Information (1)

PARTNUMBER	PACKAGE	BODY SIZE (NOM)
AOS245T	TSSOP20	6.50mm×4.40mm
A032451	SOP20	12.80mm×7.50mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Functional Block Diagram

Function Table

CONTROL	. INPUTS	OUTPUT CIRCUITS		OUTPUT
ŌĒ	DIR	A PORT	A PORT B PORT	
L	L	Enabl ed	Hi -Z	B data to A bus
L	Н	Hi -Z	Enabl ed	A data to B bus
Н	Х	Hi -Z	Hi -Z	Isolation

NOTE:

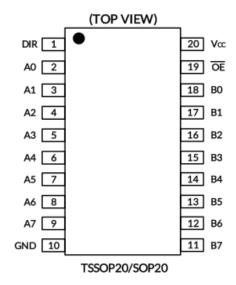
H=HIGH voltage level L=LOW voltage level

X=Don't care

Z=High impedance OFF-state

AOS245T

PACKAGE/ORDERING INFORMATION(1)


PRODUCT	ORDER I NG NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGEMA RKING ⁽²⁾	MSL ⁽³⁾	PACKAGE OPTION
AOS24ET	A0S245TXTSS20	-40 ~+125	TSSOP20	A0S245T	MSL3	Tape and Reel,4000
A0S245T	A0S245TXS20	-40 ~+125	SOP20	A0S245T	MSL3	Tape and Reel,1500

NOTE:

- (1) This information is the most current data available for the designated devices. This data is subject to change without noticeand revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information(data code and vendor code), the logo or the environmental category on the device.
- (3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN TSS0P20/S0P20	NAME	TYPE ⁽¹⁾	FUNCTI ON
2	AO	1/0	Input/Output
3	A1	1/0	Input/Output
4	A2	1/0	Input/Output
5	А3	1/0	Input/Output
6	A4	1/0	Input/Output
7	A 5	1/0	Input/Output
8	A6	1/0	Input/Output
9	A7	1/0	Input/Output
11	В7	1/0	Input/Output
12	В6	1/0	Input/Output
13	B5	1/0	Input/Output
14	B4	1/0	Input/Output
15	В3	1/0	Input/Output
16	B2	1/0	Input/Output
17	B1	1/0	Input/Output
18	В0	1/0	Input/Output
1	DIR	I	Direction control
10	GND	G	Ground.
19	ŌĒ	I	Output Enable (Active Low). Pull $\overline{\text{OE}}$ high to place all outputs in 3-state mode.
20	Vcc	Р	supply voltage. 2V≤Vcc≤5.5V

⁽¹⁾ I = i nput, 0=output, P=power, G=Ground.

SPECIFICATIONS

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)(1)

SYMBOL	PARAMETER	PARAMETER			
Vcc	Supply Voltage Range	-0.5	6.5		
V1 (2)	Input Voltage Range	-0.5	Vcc+0.5	V	
V ₀ (2)(3)	Output Voltage Range		-0.5	Vcc+0.5	
Тік	Input Clamp Current	Vi <0 or Vi >Vcc		± 20	
І ок	Output Clamp Current	Vo <0 or V1 >Vcc		± 20	
I 0	Continuous output current $V_0 = 0$ to V_{CC}			± 50	mA
	Continuous current through Vcc	or GND		± 100	
	Dankaga tharmal impadance(4)	TSS0P20		40	°C (M
JA	Package thermal impedance ⁽⁴⁾	SOP20		40	°C/W
TJ	Junction Temperature ⁽⁵⁾	-40	150	°C	
Tstg	Storage Temperature		-65	150	C

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of V_{cc} are provided in the recommended operating conditions table.
- (4) The package thermal impedance is calculated in accordance with JESD-51.
- (5) The maximum power dissipation is a function of $T_{J(MAX)}$, R_{JA} , and T_{A} . The maximum allowable power dissipation at any ambient temperature is $P_{D} = \left(T_{J(MAX)} T_{A}\right) / R_{JA}$. All numbers apply for packages soldered directly onto a PCB.

ESD Ratings

			VALUE	UNIT
V _(ESD)	Electrostatic	Human-Body Model (HBM), MIL-STD-883K METHOD 3015.9	± 2000	V
V (ESD)	di scharge	Charged-Device Model (CDM), ANSI/ESDA/JEDEC JS-002-2018	± 200	V

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Recommended Operating Conditions

 V_{CC} is the supply voltage associated with the input portandoutput port. $^{(1)(2)}$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	Vcc		2		5.5	
		Vcc=2V	1.2			
High-Level Input Voltage	Vih	Vcc=3. 3V	1.5			
		Vcc=4.5V to 5.5V	2			
Low-Level Input Voltage		Vcc=2V			0.5	V
	VIL	Vcc=3.3V			0.65	
		Vcc=4.5V to 5.5V			0.8	
Input Voltage	Vı		0		Vcc	
Output Voltage	V ₀		0		Vcc	
High-Level Output Current	I он				-24	0
Low-Level Output Current	I ol				24	- mA
Input transition rise or fall rate	Δ t / Δ v				8	ns/V
Operating free-air Temperature	Та		-40		125	$^{\circ}$

⁽¹⁾ All unused or driven (floating) data inputs (I/Os) of the device must be held at logic HIGH or LOW (preferably V_{CC} or GND) to ensure proper device operation and minimize power.

⁽²⁾ All unused control inputs must be held at V_{CC} or GND to ensure proper device operation and minimize power consumption.

ELECTERICAL CHARACTERISTICS

over recommended operating free-air temperature range (TYP values are at TA = $+25^{\circ}$ C, Full= -40° C to 125° C, unless otherwise noted).

PARAMETER	TEST CONDITIONS	Vcc	TEMP	MI N ⁽³⁾	TYP ⁽⁴⁾	MAX ⁽³⁾	UNIT
	I он=-50µ A	2V to 5.5V		Vcc-0. 1			
		3.3V		2.45			
VoH	I oH=-24mA	4.5V		3.76			
		5.5V		4.76			
	I он=-50mA	5.5V	- Full	3.85			V
	I он=-50µ A	2V to 5.5V	Luli			0.1	v
		3.3V				0.89	
VoL	I oH=-24mA	4.5V				0.73	
		5.5V				0.69	
	I он=-50mA	5.5V				1. 65	
Li	Vı=Vcc or GND	5. 5V	+25			± 1	
11	VI-VIC OI GIND	3. 3V	Ful I			± 2	
1 oz ⁽³⁾	Vo=Vcc or GND,	5. 5V	+25			± 1	
I OZ	VI=VIH OF VIL	5. 5V	Full			± 5	μA
I cc	V. Vos or CND(4) Lo O	E EV	+25			4	
I CC	Vi=Vcc or GND ⁽⁴⁾ , Io=0	5.5V	Ful I			40	
	One input at 3.4V,	5 51/	+25		0.6		
I cc	Other inputs at GND or Vcc	5. 5V	Ful I			1.5	
Сі	Vi=Vcc or GND	5V	25		7		
Со	Vo=Vcc or GND	5V	+25		8		pF

- (1) Limits are 100% production tested at 25° C. Limits over the operating temperature range are ensured through correlations using statistical quality control (SQC) method.
- (2) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.
- (3) For I/O ports, the parameter I_{OZ} includes the input leakage current.
- (4) Hold all unused data inputs of the device at V_{CCI} or GND to assure proper device operation.

AOS245T

over recommended operating free-air temperature range(unless otherwise noted).

PARAMETER	FROM(INPUT)	TO(OUTPUT)	1	TA=25°C ⁽¹⁾			TA=-40~125°C°(1)		
	, ,		MIN	TYP	MAX	MIN	TYP	MAX	
t PLH	- An or Bn	Dn or An	5.1	14.2	21.6	5.1		23. 2	
T PHL		Bn or An	4.2	11.7	17.6	4.2		19.5	
tрzн	QF.		7.5	22.1	34.5	7.5		37.5	nc
t PZL	ŌĒ	An or Bn	6.1	24.3	39. 2	6.1		43.1	ns
tрнz			4.1	9.7	15.6	4.1		17.5	
t PLZ	ŌĒ	An or Bn	3.9	9.4	14.5	3.9		16.3	

(1) This parameter is ensured by design and/or characterization and is not tested in production.

Switching Characteristics

over recommended operating free-air temperature range, V_{CC} 3.3V (unless otherwise noted).

PARAMETER	FROM(INPUT)	FROM(INPUT) TO(OUTPUT)		TA=25°C ⁽¹⁾		TA=-40~125°C ⁽¹⁾			UNIT
		, ,	MIN	ТҮР	MAX	MIN	TYP	MAX	
t PLH	- An or Bn	Bn or An	3.3	7.6	11.5	3.3		13.1	
t PHL			DII OI AII	3.2	7.4	11.1	3. 2		12.5
tрzн	O.F.	An or Dn	4.2	10.6	16. 2	4.2		18.5	nc
t PZL	ŌĒ	An or Bn	4.9	11.9	19.5	4.9		21.7	ns
t PHZ	ŌĒ	An an Dn	2.9	6.7	10.1	2.9		11.3	
t PLZ		An or Bn	2.6	5.4	8.6	2.6		9.6	

(1) This parameter is ensured by design and/or characterization and is not tested in production.

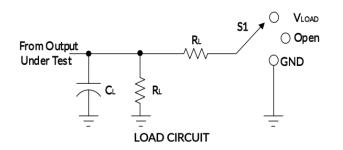
Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 3.3V (unless otherwise noted).

PARAMETER	FROM(INPUT)	TO(OUTPUT)	-	TA=25°C ⁽¹⁾			TA=-40~125°C ⁽¹⁾			
		·	MIN	ТҮР	MAX	MIN	TYP	MAX		
T PLH	- An or Bn	Dn or An	3.2	6.5	10.2	3. 2		11.4		
t PHL		Bn or An	3.1	6.3	9.5	3.1		10.6		
tрzн	O.F.	An on Da	3.6	7.4	11.1	3.6		12.5		
t PZL	ŌĒ	An or Bn	4.3	8.8	14.1	4.3		16.1	ns	
t PHZ	ŌĒ		An or Dn	2.1	5.2	8.1	2.1		9.1	
t PLZ		An or Bn	1.7	4.5	7.1	1.7		7.9		

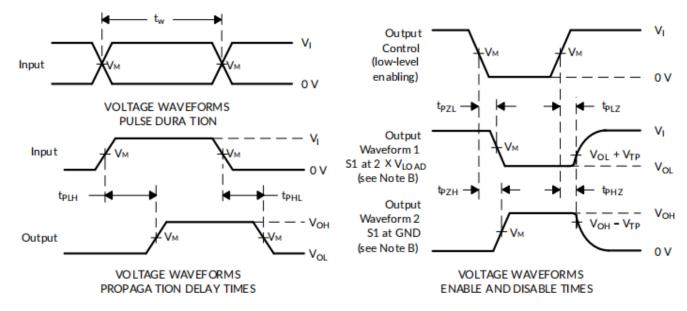
(1) This parameter is ensured by design and/or characterization and is not tested in production.

Operating Characteristics


T_A=25 ℃

	PARAMETER	TEST CONDITIONS	Vcc=5V	UNIT
C _{pd} ⁽¹⁾	Power dissipation capacitance per buffer/driver	CL=50pF f=1MHz	30	pF

(1) Power dissipation capacitance per transceiver.



Parameter Measurement Information

TEST	S1
tpd	0pen
tplz/tpzl	VLOAD
tpHz/tpZH	GND

Vcc	Vı	VM	Сι	RL	V _{TP}
$2.5V \pm 0.2V$	Vcc	Vcc/2	50pF	500	0. 15V
$3.3V \pm 0.3V$	2.7V	1.5V	50pF	500	0. 3V
5V±0.5V	2. 7V	1.5V	50pF	500	0. 3V

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
 Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_0 = 50 , dv/dt \geq 1V/ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en} .
- G. t_{PLH} and t_{PHL} are the same as $t_{\text{pd}}.$
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

Detailed Description

Overvi ew

The AOS245T is a bidirectional buffer with direction control and active low output enable. This device is commonly used in logic systems for isolation and increasing drive strength.

Feature Description

Voltage operating range from 2V to 5.5V is forgiving of 5V power supply rail accuracy. This device has balanced propagation delay, typically 14.2 ns, and balanced output drive of \pm 24 mA at 5.5V. It has low power consumption of only 40 μ A maximum static supply current. The center V_{CC} and GND pin configurations minimize high-speed switching noise. Inputs are TTL-voltage compatible.

Application and Implementation

Information in the following applications sections is not part of the AOS component specification, and AOS does not warrant its accuracy or completeness. AOS's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

AOS245T is a high drive CMOS device that can be used for a multitude of bus interface type applications where output drive or PCB trace length is a concern. The inputs can accept voltages to 5.5~V at any valid V_{CC} making it ideal for down translation.

Typical Application

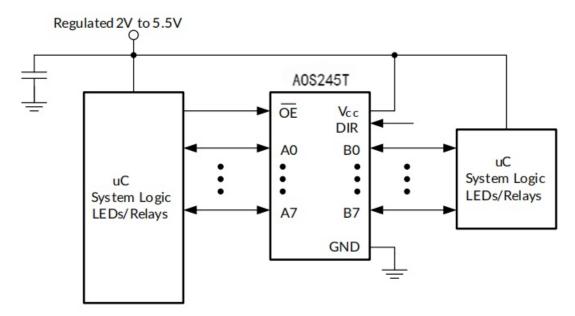


Figure 2. Application Schematic

Design Requirements

This device uses CMOS technology and has balanced output drive. Avoid bus contention because it can drive currents in excess of maximum limits. The high drive creates fast edges into light loads, so consider routing and load conditions to prevent ringing.

Power Supply Recommendations

The power supply pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1uF capacitor is recommended and if there are multiple VCC terminals then 0.01uF or 0.022uF capacitors are recommended for each power terminal. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. Multiple bypass capacitors may be paralleled to reject different frequencies of noise. The bypass capacitor must be installed as close to the power terminal as possible for the best results.

Layout

Layout Guidelines

When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally, they will be tied to GND or Vcc whichever make more sense or is more convenient.

Layout Example

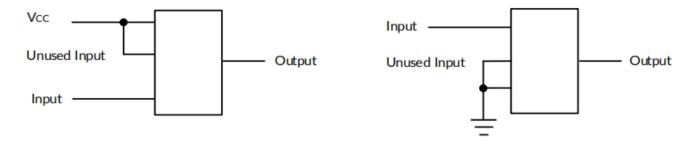
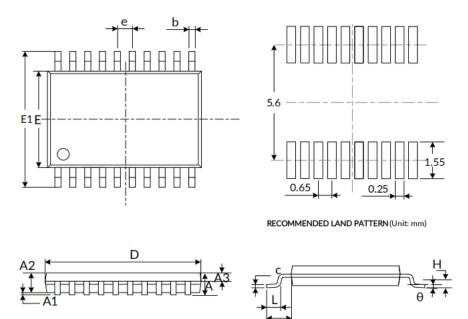
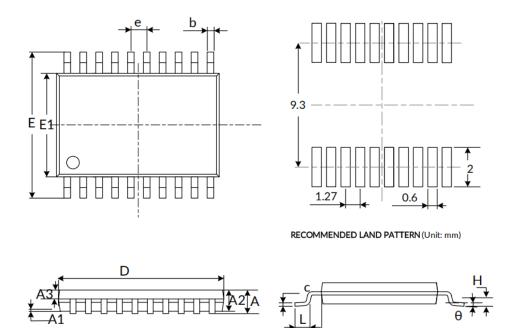



Figure 3. Layout Diagram

AOS245T

PACKAGE OUTLINE DIMENSIONS TSSOP20(4)


Symbol	Dimensions In	n Millimeters	Dimensions In Inches			
Symbol	Mi n	Max	Mi n	Max		
A ⁽¹⁾		1. 200		0.047		
A1	0.050	0. 150	0.002	0.006		
A2	0.800	1.050	0.031	0.041		
А3	0.390	0.490	0.015	0.020		
b	0. 200	0. 290	0.008	0.011		
С	0.130	0.170	0.005	0.007		
D ⁽¹⁾	6. 400	6.600	0. 252	0. 260		
E ⁽¹⁾	4. 300	4. 500	0.169	0. 177		
E1	6. 200	6. 600 0. 244		0. 260		
е	0.650([BSC) (2)	0. 026 (BSC) (2)			
L	0.450	0.750	0.018	0.030		
Н	0. 250	(TYP)	0.010(TYP)			
	0°	8°	0°	8°		
L1	1.00(REF) (3)	0.039(REF) ⁽³⁾			

NOTE:

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. REF is the abbreviation for Reference.
- 4. This drawing is subject to change without notice.

S0P20⁽⁴⁾

Cumb o l	Dimensions In	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Max		
A ⁽¹⁾		2.650		0. 104		
A1	0.100	0.300	0.004	0.012		
A2	2. 250	2. 350	0.089	0.093		
А3	0.970	1.070	0.038	0.042		
b	0.390	0.470	0. 015	0.019		
С	0. 250	0. 290	0.010	0.011		
D ⁽¹⁾	12.700	12. 900	0.500	0.508		
E	10. 100	10.500	0.398	0. 413		
E1 ⁽¹⁾	7. 400	7. 600	0. 291	0. 299		
е	1. 270((BSC) (2)	0.050(BSC) ⁽²⁾			
L	0.700	1.000	0.028	0.039		
Н	0. 250	(TYP)	0.010(TYP)			
	0°	8°	0°	8°		
L1	1. 400 ((REF) (3)	0.055(REF) ⁽³⁾			

NOTE

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. REF is the abbreviation for Reference.
- 4. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

REEL DIMENSIONS TAPE DIMENSION Reel Diameter W Q1 Q2 Q3 Q4 Q3 Q4 B0 DIRECTION OF FEED DIRECTION OF FEED

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Di ameter	Reel Width(mm)	AO (mm)	BO (mm)	KO (mm)	PO (mm)	P1 (mm)	P2 (mm)	W (mm)	Pi n1 Quadrant
TSS0P20	13' '	12.4	6. 75	6. 95	1. 20	4.0	8.0	2.0	16.0	Q1
S0P20	13' '	24.4	10.75	13.55	2.65	4.0	12.0	2.0	24.0	Q1

NOTE:

- 1. All dimensions are nominal.
- 2. Plastic or metal protrusions of 0.15mm maximum per side are not included.