

产品规格说明书

Product Data Sheet

AOS2GT08xx

WEB | www.aossemi.cn <

逻辑器件

も源管理IC 通信接口芯片

MOSFETs

运算放大器

显示驱动

MCU单片机

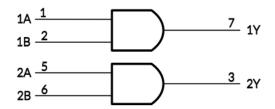
光电器件

AOS2GTO8 Dual 2-Input Positive-AND Gate

DESCRIPTION

The AOS2GTO8 dual2-input positive-AND gate is designed for 2.0 to 5.5V V_{CC} operation. The AOS2GTO8 device performs the Boolean function Y=A \cdot B or Y= $\overline{\overline{A}+\overline{B}}$ in positive logic. The device is fully + specified for partial-power-down applications using $I_{\rm off}$. The $I_{\rm off}$ circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The AOS2GTO8 is available in Green MSOP8 and VSSOP8 packages. It operates over an ambient temperature range of $-40^{\circ}C$ to $+125^{\circ}C$.

FEATURES


Operating Voltage Range: 2.0V to 5.5V

Low Power Consumption: $1\mu A$ (Max)

Operating Temperature Range: -40°C to +125°C

Inputs Are TTL-Voltage Compatible High Output Drive: \pm 32mA at Vcc=5.0V MicroSize Packages: MSOP8, VSSOP8

Simplified Schematic

APPLICATIONS

Active Noise Elimination
Bar Code Scanner
Blood Pressure Monitor
CPAP Machine
Fingerprint Identification
Network Attached Storage(NAS)

Device Information (1)

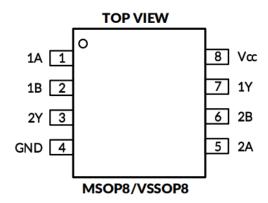
PART NUMBER	PACKAGE	BODY SIZE (NOM)
0070000	MSOP8	3.00mm $ imes 3.00$ mm
AOS2GT08	VSS0P8	2.00mm×2.30mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

FUNCTION TABLE

I NP	OUTPUT	
A	A B	
Н	Н	Н
L	Н	L
Н	L	L
L	L	L

Y=A · B H=High Voltage Level L=Low Voltage Level


PACKAGE/ORDERING INFORMATION

PRODUCT	ORDERI NG NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE Marking ⁽²⁾	MSL ⁽³⁾	PACKAGE OPTION
0070000	AOS2GTO8XM	-40℃~+125℃	MSOP8	AOS2GT08	MSL3	Tape and Reel, 4000
A0S2GT08	A0S2GT08XVS8	-40℃~+125℃	VSS0P8	2T08	MSL3	Tape and Reel, 3000

NOTE:

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN MSOP8/VSSOP8	NAME	1/0 ⁽¹⁾	FUNCTI ON
1	1A	I	Channel 1 logic input
2	2B	I	Channel 1 logic input
3	2Y	0	Logic level output
4	GND	-	Ground
5	2A	I	Channel 2 logic input
6	2B	I	Channel 2 logic input
7	1Y	0	Logic level output
8	Vcc	-	Power Supply

(1) I=input, O=output.

Specifications Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)(1)(2)

			MIN	MAX	UNIT
Vcc	Supply voltage range		-0.5	6.5	
Vı	Input voltage range ⁽²⁾		-0.5	6.5	V
V ₀	Voltage range applied to any output in the hi power-off state ⁽²⁾	gh-impedance or	-0.5	6.5	V
V ₀	Voltage range applied to any output in the hig	-0.5	Vcc+0. 5		
Тік	Input clamp current	Vı<0		-50	
І ок	Output clamp current Vo <o< td=""><td></td><td>-50</td><td>mA</td></o<>			-50	mA
I o	Continuous output current			± 50	
	Continuous current through V∞ or	GND		± 100	
	Dackago thormal impodance (4)	MSOP8		170	°C/W
JA	Package thermal impedance (4)	VSS0P8		205	K/W
TJ	T _J Junction temperature ⁽⁵⁾			150	$^{\circ}$
Tstg	T _{stg} Storage temperature			150	

- (1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of Vac is provided in the *Recommended Operating Conditions* table.
- (4) The package thermal impedance is calculated in accordance with JESD-51.
- (5) The maximum power dissipation is a function of $T_{J(MAX)}$, R_{JA} , and T_{A} . The maximum allowable power dissipation at any ambient temperature is $P_{D} = \left(T_{J(MAX)} T_{A}\right) / R_{JA}$. All numbers apply for packages soldered directly onto a PCB.

ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)	± 2000	
V _(ESD)	El ectrostatic di scharge	Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	± 1000	V
		Machine Model (MM)	± 200	

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible todamage because very small parametric changes could cause the device not to meet its published specifications.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (TYP values are at $T_A=+25\,^{\circ}\mathrm{C}$, Full= $-40\,^{\circ}\mathrm{C}$ to $125\,^{\circ}\mathrm{C}$, unless otherwise noted.)

Recommended Operating Conditions

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
Supply Voltage	Vcc	Operating	2.0	5.5	
		Vcc=2.0V	1.0		
High-level input voltage	VIH	Vcc=3. 3V	1.5		
		Vcc=4.5V to 5.5V	2.0		
		Vcc=2. 0V		0.3	V
Low-level input voltage	VIL	Vcc=3. 3V		0.55	
		Vcc=4.5V to 5.5V		0.8	
Input Voltage	Vı		0	5.5	
Output Voltage	Vo		0	Vcc	
Input transition rise or fall	t/ v	Vcc=2.0V to 5.5V		5	ns/V
Operating Temperature	Та		-40	+125	J

⁽¹⁾ All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

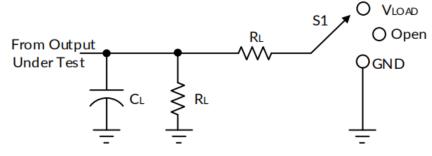
AOS2GT08

DC Characteristics

	PARAMETER	TEST CONDITIONS	Vcc	TEMP	MI N ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
		I он=-100µ А	2.0V to 5.5V		Vcc-0. 1			
		I он=-8mA	2.0		1.6			
	Vон	I он=-24mA	3.3		2.5			
	V 0H		4.5V		3.8			
		I он=-32mA	5V		4.2			
			5.5V	Full	4.8			V
		I он=100µ A	2.0V to 5.5V	Full			0.1	V
		I он=8mA	2.0				0.45	
	Vol	I он=24mA	3.3				0. 55	
	VOL		4.5V				0. 55	
		I он=32mA	5V				0.5	
			5.5V				0.45	
Li	A or D inpute	Vi=5.5V or GND	0V to 5.5V	+25℃		± 0.1	± 1	
11	A or B inputs	VI=3.3V OI GIND	00 10 5.50	Ful I			± 5	
		V V 5 5V		+25℃		± 0.1	± 1	
	off	V1 or V0=5.5V	0	Full			± 10	μA
				+25℃		0.1	1	
	I cc	V₁=5.5V or GND, I₀=0	2.0V to 5.5V	Full			10	
	I сст	One input at 3.4V, Other inputs at Vcc or GND	5. 5V	Full			500	
(Cı(Input Capacitance)	Vcc=OV, f=10MHz	OV	+25℃		6		pF

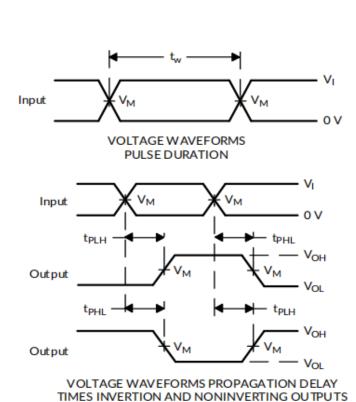
- (1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.
- (2) Limits are 100% production tested at 25° C. Limits over the operating temperature range are ensured through correlations sing statistical quality control (SQC) method.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

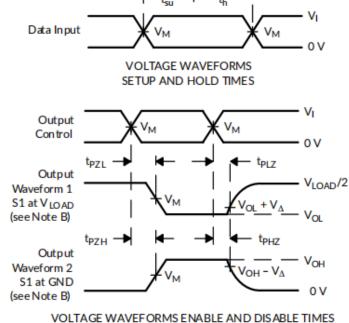
AC Characteristics


PARAMETER	SYMBOL	TEST C	MIN	ТҮР	MAX	UNIT	
		Vcc=2. 0V ± 0. 2V	CL=30pF , RL=500		15. 7		
Propagation Delay	t _{pd}	Vcc=3. 3V ± 0. 3V	CL=50pF , RL=500		13.8		ns
		Vcc=5V ± 0. 5V	CL=50pF , RL=500		4.3		
Power dissipation capacitance	C _{pd}	Vcc=5V	f=10MHz		22		pF

- (1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.
- (2) This parameter is ensured by design and/or characterization and is not tested in production.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

٧ı


Parameter Measurement Information



TEST	S1
tplh/tphl	0pen
tplz/tpzl	VLOAD
tpнz/tpzн	GND

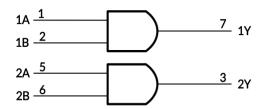
Vcc	INPUTS		Vw	VLOAD	C.	D.	V
VCC	Vı	tr/tf	T VM	V LOAD	CL	CL RL	
2.5V±0.2V	Vcc	≤2ns	Vcc/2	2 x Vcc	30pF	500	0. 15V
$3.3V \pm 0.3V$	3V	≤2.5ns	1.5V	6V	50pF	500	0. 3V
5V±0.5V	Vcc	≤2.5ns	Vcc/2	2 x Vcc	50pF	500	0. 3V

Timing Input

LOW-AND HIGH-LEVEL ENABLING

- NOTES: A. C∟includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

 Waveform 2 is for an output with internal conditions such that the output is
 - high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, $Z_0=50$.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. tplz and tpHz are the same as tdis.
 - F. tpzL and tpzH are the same as ten.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .
 - H. All parameters and waveforms are not applicable to all devices.


Figure 1. Load Circuit and Voltage Waveforms

Detailed Description

Overvi ew

The AOS2GTO8 devices a dual 2-input positive-AND gate. The device performs the Boolean AND function (Y=A \cdot B or Y= $\overline{A}+\overline{B}$) in positive logic. Low $I \circ c$ current allows this device to be used in power sensitive or battery powered applications. Robust inputs allow the device to up-translate with a propagation delay of 4.3ns.

Functional Block Diagram

Feature Description

- · The $V \infty$ for the device is optimized at 5V.
- The inputs accept V_{IH} levels of 2V.
- · Output ringing is minimized by slow edge rates.
- · Inputs are TTL-Voltage compatible.

Application and Implementation

Information in the following applications sections is not part of the AOS component specification, and AOS does not warrant its accuracy or completeness. AOS's customers are responsible for determining suitability of components for their purposes . Customers should validate and test their design implementation to confirm system functionality.

Application Information

The AOS2GTO8 device is a single AND gate, which is often used for many common functions like power sequencing or an on LED indicator. Because the device is configured to output LOW unless all inputs are HIGH, an LED tied to the output of the device will only turn HIGH when all systems connected are sending a HIGH, or ready signal.

Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.

POWER SUPPLY RECOMMENDATIONS

The power supply pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1uF capacitor is recommended and if there are multiple VCC terminals then 0.01uF or 0.022uF capacitors are recommended for each power terminal. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. The 0.1 μ F and 1 μ F capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible.

LAYOUT

Layout Guidelines

When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. Specified below are the rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally, they will be tied to GND or V_{CC} whichever make more sense or is more convenient.

Layout Example

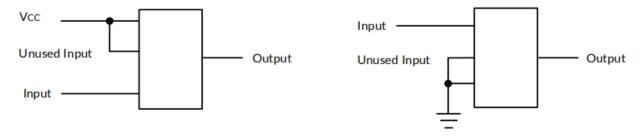
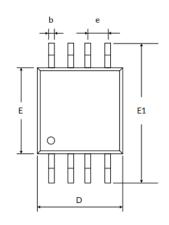
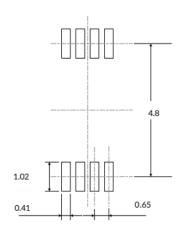
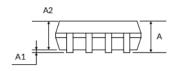
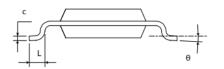
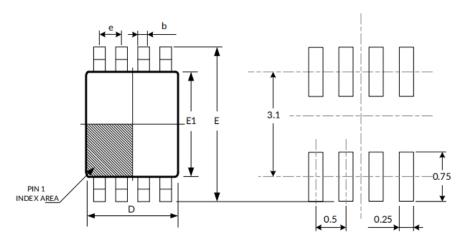




Figure 2. Layout Diagram

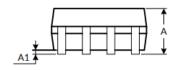


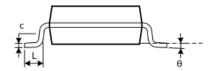

PACKAGE OUTLINE DIMENSIONS MSOP8(3)

RECOMMENDED LAND PATTERN (Unit: mm)

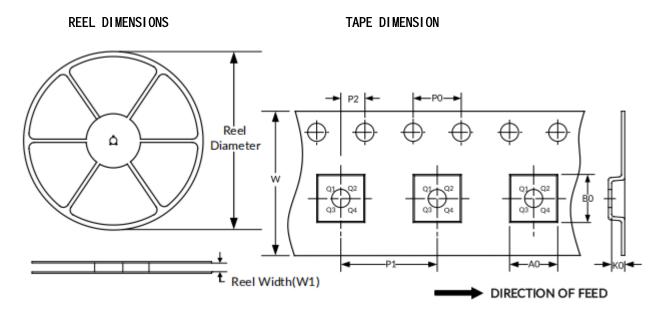

Cumbal	Dimensions In	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Mi n	Max	
A ⁽¹⁾	0.820	1. 100	0.032	0.043	
A1	0.020	0. 150	0. 001	0.006	
A2	0. 750	0. 950	0.030	0.037	
b	0. 250	0.380	0.010	0.015	
С	0.090	0. 230	0.004	0.009	
D ⁽¹⁾	2. 900	3. 100	0. 114	0. 122	
е	0.650(BSC) ⁽²⁾		0.026((BSC) (2)	
E ⁽¹⁾	2. 900	3. 100	0. 114	0.122	
E1	4. 750	5.050	0. 187	0. 199	
L	0.400	0.800	0.016	0.031	
	0°	6°	0°	6°	

NOTE:


- 1. Plastic or metal protrusions of $0.15 \mathrm{mm}$ maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.



VSSOP8(3)



Symbol	Dimensions In	n Millimeters	Dimensions In Inches			
	Min	Max	Min	Max		
A ⁽¹⁾	0.600	0. 900	0. 024	0. 085		
A1	0.000	0.100	0.000	0.004		
b	0.170	0. 250	0.007	0.010		
С	0.100	0. 200	0.004	0.008		
D ⁽¹⁾	1. 900	2. 100	0.075	0.083		
е	0.500((BSC) (2)	0. 020 (BSC) (2)			
Е	3.000	3. 200	0. 118	0. 126		
E1 ⁽¹⁾	2. 200	2. 400	0.087	0.095		
L	0. 200	0. 350	0.008	0.014		
	0°	6°	0°	6°		

NOTE:

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width(mm)	AO (mm)	BO (mm)	KO (mm)	PO (mm)	P1 (mm)	P2 (mm)	W (mm)	Pi n1 Quadrant
MSOP8	13' '	12.4	5. 20	3.30	1.50	4.0	8.0	2.0	12.0	Q1
VSS0P8	7' '	9.5	2. 25	3.35	1. 40	4.0	4.0	2.0	8.0	Q3

NOTE:

- 1. All dimensions are nominal.
- 2. Plastic or metal protrusions of 0.15mm maximum per side are not included.