

产品规格说明书

Product Data Sheet

AOS1GT32Xxx

WEB | www.aossemi.cn q

逻辑器件

も源管理IC 通信接口芯片

LDO稳压器

•

MOSFETs

运算放大器

显示驱动

MCU单片机

光电器件

AOS1GT32 Single 2-Input Positive-OR Gate

DESCRIPTION

The AOS1GT32 single 2-input positive-OR gate is designed for 2.0V to 5.5V V_{CC} operation. The AOS1GT32 device performs the Boolean function Y=A + B or Y= $\overline{A} \cdot \overline{B}$ in positive logic. The device is fully specified for partial-power-down applications using loff. The loff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The AOS1GT32 is available in Green SOT23-5 and SC70-5packages. It operates over an ambient temperature range of $-40^{\circ}C$ to $+125^{\circ}C$.

FEATURES

Operating Voltage Range: 2.0V to 5.5V Low Power Consumption: 1µA (Max)

Operating Temperature Range: -40°C to +125°C

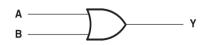
TTL Input are Compatible Input Accept Voltage to 5.5V Output Drive: $\pm 32mA$ at VCC=5.0V

I_{off} Supports Partial-Power-Down Mode Operation

Micro SIZE PACKAGES: SOT23-5, SC70-5

APPLICATIONS

AV Receiver


Blu-ray Player and Home Theater Digital Picture Frame (DPF)

High-Speed Data Acquisition and Generation

Personal Navigation Device (GPS)

Portable Media Player

LOGIC SYMBOL

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
AOS1GT32	S0T23-5	2.92mm×1.60mm
AUS1G132	SC70-5	2.10mm×1.25mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

FUNCTION TABLE

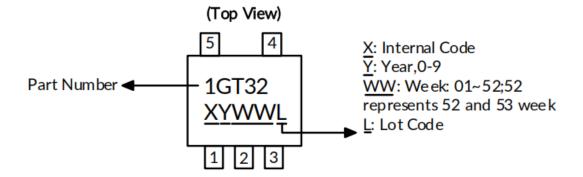
INP	OUTPUT	
Α	В	Υ
Н	Н	Н
L	Н	Н
Н	L	Н
L	L	L

Y=A+B

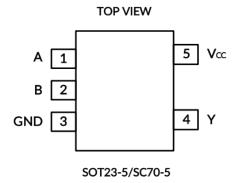
H=High Voltage Level L=Low Voltage Level

PACKAGE/ORDERING INFORMATION

PRODUCT	ORDERI NG NUMBER	TEMPERATURE RANGE	PACKAGE LEAD	PACKAGE MARKI NG ⁽²⁾	MSL ⁽³⁾	PACKAGE OPTION
AOS1GT32	AOS1GT32XF5	-40℃~+125℃	S0T23-5	1GT32	MSL3	Tape and Reel, 3000
AUS1G132	AOS1GT32XC5	-40°C~+125°C	SC70-5 ⁽⁴⁾	1GT32	MSL3	Tape and Reel, 3000



NOTE:


- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.
- (4) Equivalent to S0T353.

Marking Information

(1) S0T23-5, SC70-5

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN	NAME I/O ⁽¹⁾		FUNCTION	
S0T23-5/SC70-5	IVAME	170*7	FUNCTI ON	
1	А	I	Input	
2	В	I	Input	
3	GND	G	Ground	
4	Υ	0	Output	
5	Vcc	Р	Power Pin	

(1) I=input, O=output, P=power, G= Ground.

AOS SEMICONDUCTOR

AOS1GT32

Specifications Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
Vcc	Supply voltage range		-0.5	6.5	
Vı	Input voltage range ⁽²⁾		-0.5	6.5	V
Vo	Voltage range applied to any output in the hi power-off state ⁽²⁾	gh-impedance or	-0.5	6.5	
Vo	Voltage range applied to any output in the hig	-0.5	Vcc+0. 5		
Тік	Input clamp current Vi<0			-50	
І ок	Output clamp current	V ₀ <0		-50	
I o	Continuous output current			± 50	mA
	Continuous current through V∞ or		± 100		
	Package thermal impedance (4)	S0T23-5		230	°C/W
JA	Package thermal impedance ·	SC70-5		380	C/W
TJ	Junction temperature ⁽⁵⁾			150	°C
Tstg	Storage temperature	-65	150		

- (1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of V_{cc} is provided in the *Recommended Operating Conditions* table.
- (4) The package thermal impedance is calculated in accordance with JESD-51.
- (5) The maximum power dissipation is a function of $T_{J(MAX)}$, R_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A) / R_{JA}$. All numbers apply for packages soldered directly onto a PCB.

ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
		Human-body model (HBM), MIL-STD-883K METHOD 3015.9	± 2000	
V _(ESD)	El ectrostatic di scharge	Charged-device model (CDM), ANSI/ESDA/JEDEC JS-002-2018	± 1000	V
		Machine Model (MM), JESD22-A115C(2010)	± 200	

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible todamage because very small parametric changes could cause the device not to meet its published specifications.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (TYP values are at $T_{\text{A}=+}25\,^{\circ}\!\!\text{C}$, unless otherwise noted.) $^{(1)}$

Recommended Operating Conditions

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
Supply Voltage	V cc	Operating	2.0	5.5	
		Vcc=2. 0V	1.0		
High-level input voltage	Vih	Vcc=3.3V	1.5		
		Vcc=4.5V to 5.5V	2.0		
		Vcc=2. 0V		0.3	V
Low-level input voltage	VIL	Vcc=3.3V		0.55	
		Vcc=4.5V to 5.5V		0.8	
Input Voltage	Vı		0	5.5	
Output Voltage	Vo		0	Vcc	
Input transition rise or fall	t/ v	Vcc=2.0V to 5.5V		5	ns/V
Operating Temperature	Та		-40	125	$^{\circ}$

⁽¹⁾ All unused inputs of the device must be held at $V_{\text{\tiny CC}}$ or GND to ensure proper device operation.

AOS SEMICONDUCTOR

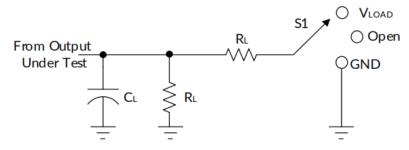
AOS1GT32

DC Characteristics

	PARAMETER	TEST CONDITIONS	Vcc	TEMP	MI N ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
		I он=-100µ А	2.0V to 5.5V		Vcc-0. 1			
		I он=-8mA	2. 0V		1.6			
	Vон	I он=-24mA	3. 3V		2.5			
	V 0H		4.5V		3.8			
		I он=-32mA	5. OV		4. 2			
			5.5V		4.8			
		I он=100 µ А	2.0V to 5.5V				0.1	
		I oH=8mA	2. 0V				0. 45	
	Vol	I он=24mA	3. 3V				0.55	
	V 0L		4.5V				0.55	
		I он=32mA	5. OV				0.5	
			5. 5V				0. 45	
	A on D innuto	V F FV on CND	0V +o F FV	+25℃		± 0. 1	± 1	
Ιı	A or B inputs	V ₁ =5.5V or GND	0V to 5.5V	Ful I			± 5	
		V an V E EV		+25℃		± 0. 1	± 1	
	off	V1 or V0=5.5V	0	Full			± 10	
		V 5 5V ar CND L 0	2 0// +- 5 5//	+25℃		0.1	1	
	I cc	V ₁ =5.5V or GND, I ₀ =0	2.0V to 5.5V	Full			10	μA
I сст		One input at 3.4V, Other inputs at Vcc or GND	5. 5V	Ful l			500	
Cı(Input Capaci tance)		Vcc=0V, f=10MHz	ov	+25℃		6		pF

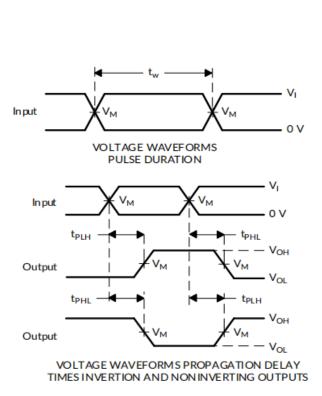
- (1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.
- (2) Limits are 100% production tested at 25° C. Limits over the operating temperature range are ensured through correlations sing statistical quality control (SQC) method.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

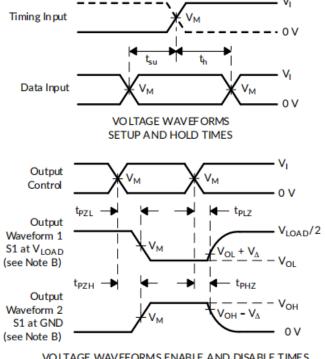
AOS SEMICONDUCTOR


AC Characteristics

PARAMETER	SYMBOL	TEST C	MIN	ТҮР	MAX	UNIT	
		Vcc=2.0V ± 0.2V	CL=30pF , RL=500		3.8		
Propagation Delay	t _{pd}	Vcc=3. 3V ± 0. 3V	CL=50pF , RL=500		2.6		ns
	Vcc=5V ± 0. 5V	CL=50pF , RL=500		2.8			
Power dissipation capacitance	C _{pd}	Vcc=5V	f=10MHz		25		pF

- (1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.
- (2) This parameter is ensured by design and/or characterization and is not tested in production.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.

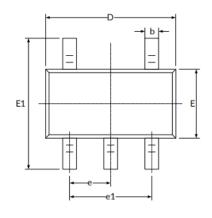



Parameter Measurement Information

TEST	S1
tplh/tphl	0pen
tplz/tpzl	VLOAD
tpнz/tpzн	GND

Vcc	INPUTS		VM	VLOAD	C.	RL	v
VCC	Vı	tr/tf	VM	V LOAD	CL	KL	V
2.0V±0.2V	Vcc	≤2ns	Vcc/2	2 x Vcc	30pF	500	0. 15V
3.3V±0.3V	3V	≤2.5ns	1.5V	6V	50pF	500	0. 3V
5V± 0.5V	Vcc	≤2.5ns	Vcc/2	2 x Vcc	50pF	500	0. 3V

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW-AND HIGH-LEVEL ENABLING



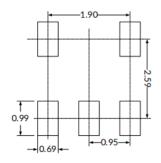
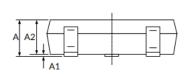
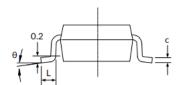
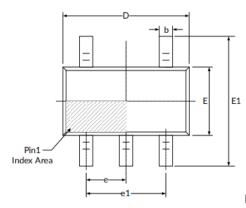

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
 Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, Z_0 = 50 .
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. tplz and tpHz are the same as tdis.
 - F. tpzl and tpzH are the same as ten.
 - G. t_{PLH} and t_{PHL} are the same as t_{pd} .
 - H. All parameters and waveforms are not applicable to all devices.

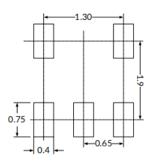
Figure 1. Load Circuit and Voltage Waveforms



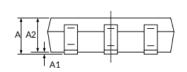

PACKAGE OUTLINE DIMENSIONS SOT23-5(3)

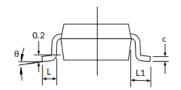
RECOMMENDED LAND PATTERN (Unit: mm)


Cymbol	Dimensions Ir	Millimeters	Dimensions In Inches		
Symbol	Mi n	Max	Mi n	Max	
A ⁽¹⁾	1.050	1. 250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1. 150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D ⁽¹⁾	2.820	3.020	0. 111	0. 119	
E ⁽¹⁾	1.500	1.700	0.059	0.067	
E1	2. 650	2. 950	0.104	0. 116	
е	0.950(BSC) ⁽²⁾		0.037(BSC) ⁽²⁾		
e1	1.800	2.000	0. 071	0.079	
L	0.300	0.600	0.012	0.024	
	0°	8°	0°	8°	


NOTE:

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. BSC (Basic Spacing between Centers), "Basic" spacing is nominal.
- 3. This drawing is subject to change without notice.




SC70-5⁽³⁾

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	Dimensions In	n Millimeters	Dimensions In Inches			
	Mi n	Max	Mi n	Max		
A ⁽¹⁾	0.900	1. 100	0.035	0.043		
A1	0.000	0.100	0.000	0.004		
A2	0.900	1.000	0.035	0.039		
b	0.150	0.350	0.006	0.014		
С	0. 110	0. 175	0.004	0.007		
D ⁽¹⁾	2.000	2. 200	0.079	0.087		
E ⁽¹⁾	1. 150	1. 350	0.045	0.053		
E1	2. 150	2. 450	0.085	0.096		
е	0.650	(TYP)	0.026(TYP)			
e1	1. 200	1.400	0.047	0.055		
L	0. 260	0.460	0.010	0.018		
L1	0.525((REF) (2)	0. 021(REF) ⁽²⁾			
	0°	8°	0°	8°		

NOTE:

- 1. Plastic or metal protrusions of 0.15mm maximum per side are not included.
- 2. REF is the abbreviation for Reference.
- 3. This drawing is subject to change without notice.

TAPE AND REEL INFORMATION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width(mm)	AO (mm)	BO (mm)	KO (mm)	PO (mm)	P1 (mm)	P2 (mm)	W (mm)	Pi n1 Quadrant
SC70-5	7''	9.5	2. 25	2. 55	1. 20	4.0	4.0	2.0	8.0	Q3
S0T23-5	7' '	9.5	3. 20	3. 20	1.40	4.0	4.0	2.0	8.0	Q3

NOTE:

- 1. All dimensions are nominal.
- 2. Plastic or metal protrusions of 0.15mm maximum per side are not included.