

产品规格说明书

Product Data Sheet

AOS1G97Xxx

WEB | www.aossemi.cn <

も源管理IC 通信接口芯片

MOSFETs

运算放大器

显示驱动

MCU单片机

光电器件

Low Power Configurable Multiple-Function Gate

DESCRIPTION

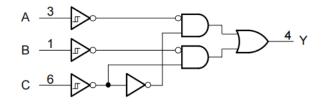
The RS1G97 configurable multiple-function gate is designed for 1.65V to 5.5V V_{CC} operation. The RS1G97 device features configurable multiple functions. The output state is determined by eight patterns of 3-bit input. The user can choose the logic functions MUX, AND, OR, NAND, NOR, inverter, and noninverter. All inputs can be connected to V_{CC} or GND. This device functions as an independent gate, but because of Schmitt action, it may have different input threshold levels for positive-going (V_{T+}) and negative-going (V_{T-}) signals. The RS1G97 is fully specified for partial-power-down applications using I_{Off} . The I_{Off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. This device available in Green SOT23-6 and SOT363(SC70-6) packages. It operates over an ambient temperature range of -40°C to +125°C.

FEATURES

Operating Voltage Range: 1.65V to 5.5V

Low Power Consumption: 10µA (Max)

Inputs Accept Voltage to $5.5 \mathrm{V}$


High Output Drive: $\pm 24mA$ at Vcc=3.0V

MIoff Supports Live Insertion, Partial-Power

-Down Mode, and Back-Drive Protection

Micro SIZE PACKAGES: SOT23-6, SOT363(SC70-6)

Logic Diagram (Positive Logic)

APPLICATIONS

Cable Solutions
Barcode Scanners

E-Books

Embedded PC

Network-Attached Storage Video Communications Systems

Servers

Wireless Data Access Cards, Headsets,

Keyboard, Mouse, and LAN Cards

Device Information (1)

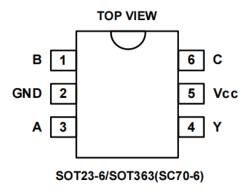
PART NUMBER	PACKAGE	BODY SIZE (NOM)
AOS1G97	S0T23-5(5)	2.92 mm $\times 1.60$ mm
AUS TG97	SC70-5(5)	2.10mm $ imes 1.25$ mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

FUNCTION TABLE

	OUTPUT		
Α	В	С	Υ
L	L	L	L
Н	L	L	L
L	Н	L	Н
Н	Н	L	Н
L	L	Н	L
Н	L	Н	Н
L	Н	Н	L
Н	Н	Н	Н

H=High Voltage Level L=Low Voltage Level


PACKAGE/ORDERING INFORMATION

PRODUCT	PRODUCT ORDERING TE		PACKAGE LEAD	PACKAGE Marking ⁽²⁾	PACKAGE OPTION
A0S1G97	AOS1G97XH6	-40℃~+125℃	S0T23-6	1G97	Tape and Reel, 3000
AUS IG97	AOS1G97XC6	-40℃~+125℃	SC70-6(S0T363)	1G97	Tape and Reel, 3000

NOTE:

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information(data code and vendor code), the logo or the environmental category on the device.

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN S0T23-6/S0T363(SC70-6)	NAME	I/O TYPE ⁽¹⁾	FUNCTI ON
1	В	I	Data Input
2	GND	Р	Ground
3	А	I	Data Input
4	Υ	0	Data output
5	Vcc	Р	Supply Power
6	С	I	Data Input

⁽¹⁾ I=input, O=output, P=power.

AOS1G97

Specifications Absolute Maximum Ratings(1)

Over operating free-air temperature range (unless otherwise noted)(1)(2)

			MIN	MAX	UNIT
Vcc	Supply voltage range		-0.5	6.5	
Vı	Input voltage range ⁽²⁾		-0.5	6.5	V
V ₀	Voltage range applied to any output in the high power-off state ⁽²⁾	-0.5	6.5		
V ₀	Voltage range applied to any output in the high	-0.5	Vcc+0. 5		
Lik	Input clamp current	V1<0		-50	
І ок	Output clamp current	V ₀ <0		-50	mA
10	Continuous output current		± 50		
	Continuous current through Vcc or G	ND		± 100	
	Package thermal impedance ⁽⁴⁾	S0T23-6		230	°C/W
JA	rackage thermal impedance	S0T363(SC70-6)		265	
Tu	Junction temperature	-65	150	$^{\circ}$ C	
Tstg	Storage temperature	-65	150		

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of Vac is provided in the Recommended Operating Conditions table.
- (4) The package thermal impedance is calculated in accordance with JESD-51.
- (5) The maximum power dissipation is a function of $T_{J(MAX)}$, R_{JA} , and T_{A} . The maximum allowable power dissipation at any ambient temperature is PD= $(T_{J(MAX)}-T_{A})/R_{JA}$. All numbers apply for packages soldered directly onto a PCB.

ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)	± 4000	
V _(ESD)	V _(ESD) Electrostatic discharge Charged-device model (CDM), per ANSI/ESDA/JEDEC	Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾	± 1500	V
		Machine model (MM)	± 200	

- (1) JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250V CDM allows safe manufacturing with a standard ESD control process.

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may bemore susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ELECTRICAL CHARACTERISTICS

over recommended operating free-air temperature range (TYP values are at $T_A=+25\,^{\circ}\!\!\!\mathrm{C}$, unless otherwise noted.) (1)

Recommended Operating Conditions

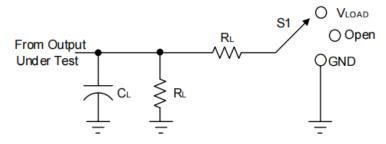
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	MAX	UNIT
		Operating	1. 65	5.5	
Supply Voltage	Vcc	Data retention only	1.5		V
Input Voltage	Vı		0	5.5	V
Output Voltage	Vo		0	Vcc	
Operating Temperature	Та		-40	+125	$^{\circ}$

⁽¹⁾ All unused inputs of the device must be held at $V\!_{\text{CC}}$ or GND to ensure proper device operation.

DC Characteristics

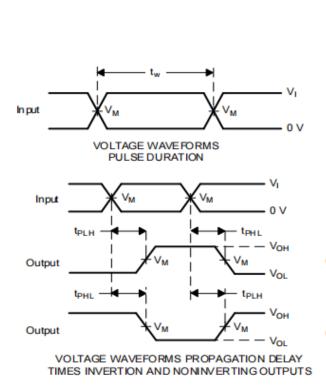
	PARAMETER	CONDITIONS	Vcc	TEMP	MI N ⁽²⁾	TYP ⁽³⁾	MAX ⁽²⁾	UNIT
			1. 65V		0.75		1.05	
	Positive going		2.3V		1. 25		1.55	
V_{T+}	input threshold voltage		3V		1.5		2.1	
	vol tage		4.5V		2.3		3.0	
			5.5V		2.8		3.4	
			1.65V		0.3		0.6	
	Negative going		2.3V		0.35		0.65	
V_{T-}	Negative going input threshold		3V		0.45		0.75	
	· vol tage		4.5V		0.7		1.0	
			5.5V		0.85		1.15	
			1. 65V		0.35		0.6	
	11		2.3V		0.6		1.2	
VT	Hysteresis (V⊤+-V⊤)		3V		1.05		1.65	
	(11+ 11)		4.5V	Full	1.6		2.0	٧
			5.5V	I di i	1. 95		2. 25	, v
		I он=-100µ А	1.65V to 5.5V		Vcc-0.1			
		I он=-4mA	1. 65V		1.2			
	Vон	I он=-8mA	2.3V		1.9			
	V UH	I он=-16mA	3V		2.4			
		I он=-24mA	31		2.3			
		I он=-32mA	4.5V		3.8			
		I он=100µ A	1.65V to 5.5V				0.1	
		I oH=4mA	1.65V				0.45	
	Vol	I он=8mA	2.3V				0.3	
	VUL	I он=16mA	- 3V				0.4	
		I он=24mA	3V				0.55	
		I он=32mA	4.5V				0.55	
		V E EV an CND	01/ +- 5 51/	+25℃		± 0.1	± 1	
Ιı	i nput	V _I =5.5V or GND	0V to 5.5V	Ful I			± 5	
		V V E EV		+25℃		± 0.1	± 1	
	off	V₁ or V₀=5.5V	0	Ful I			10	1
				+25℃		0.1	1	μA
	I cc	V ₁ =5.5V or GND, I ₀ =0	1.65V to 5.5V	Full			10	-
	ΔΙα	One input at Vcc-0.6V, Other inputs at Vcc or GND	3V to 5.5V	Full			500	
Ci(In	put Capacitance)	Vi=Vcc or GND	3.3V	+25℃		4		pF

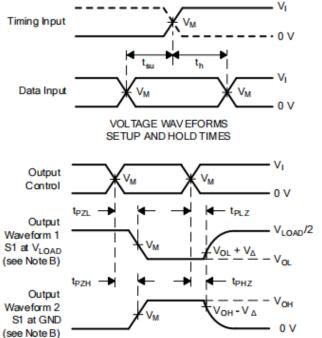
- (1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.
- (2) Limits are 100% production tested at 25℃. Limitsovertheoperating temperature range are ensured through correlations using statistical quality control (SQC) method.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.


AC Characteristics

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	ТҮР	MAX	UNIT
		Vcc=1.8V ± 0.15V	CL=30pF, RL=500		7.8		
Propagation		$Vcc=2.5V \pm 0.2V$	CL=30pF, RL=500		3.5		
Propagation Delay	t _{pd}	Vcc=3.3V ± 0.3V	CL=50pF, RL=500		3.1		ns
		Vcc=5V ± 0. 5V	CL=50pF, RL=500		2.6		
	Cpd	Vcc=1. 8V			20		
Power		Vcc=2. 5V			21		n-F
dissipation capacitance		Vcc=3. 3V	f=1MHz		22		pF
		Vcc=5V			25		

- (1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.
- (2) This parameter is ensured by design and/or characterization and is not tested in production.
- (3) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.




Parameter Measurement Information

TEST	S1
tplh/tphl	0pen
tplz/tpzl	VLOAD
tpHz/tpzH	GND

Vcc	INPUTS		VM	VLOAD			R _L		V	
VCC	Vı	tr/tf	VM	VLOAD	CL		r	\L	V	
1.8V±0.15V	Vcc	≤2ns	Vcc/2	2 x Vcc	15pF	30pF	1M	1k	0. 15V	
2.5V±0.2V	Vcc	≤2ns	Vcc/2	2 x Vcc	15pF	30pF	1M	500	0. 15V	
$3.3V \pm 0.3V$	3V	≤2.5ns	1.5V	6V	15pF	50pF	1M	500	0.3V	
5V ± 0.5V	Vcc	≤2.5ns	Vcc/2	2 x Vcc	15pF	50pF	1M	500	0. 3V	

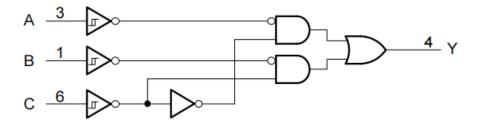
VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW-AND HIGH-LEVEL ENABLING

NOTES: A. C∟includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

 Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leqslant 10MHz, Z_0 = $50\,$.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. tplz and tpHz are the same as tdis.
- F. tpzl and tpzh are the same as ten.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms


Detailed Description

Overvi ew

This configurable multiple-function gate is designed for 1.65V to 5.5V V_{CC} operation. The RS1G97 device features configurable multiple functions. The output state is determined by eight patterns of 3-bit input. The user can choose variations of common logic functions, like MUX, AND, OR, and NOT. All inputs can be connected to V_{CC} or GND. This device functions as an independent gate, but because of Schmitt action, it may have different input threshold levels for positive-going (V_{T+}) and negative-going (V_{T-}) signals.

This device is fully-specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

Functional Block Diagram

Feature Description

The RS1G97 device has a wide operating V_{cc} range of 1.65V to 5.5V, which allows use in a broad range of systems. The 5.5V I/OS allow down translation and also allow voltages at the inputs when $V_{cc}=0V$.

Device Functional Modes

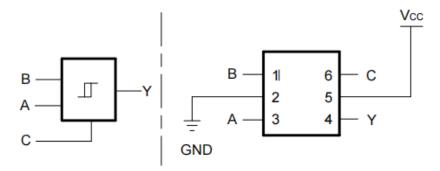


Figure 2. Two-Input MUX

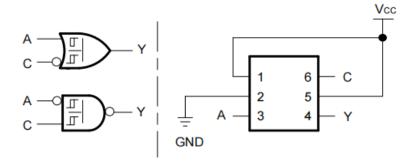


Figure 3. Two-Input AND Gate

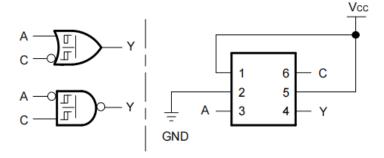


Figure 4. Two-Input OR with one input inverted or Two-Input NAND with one input inverted

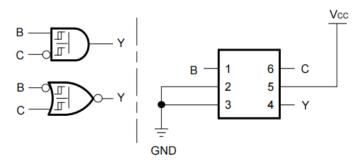


Figure 5. Two-Input AND with one input inverted or Two-Input NOR with one input inverted

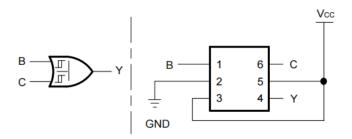


Figure 6. Two-Input OR Gate

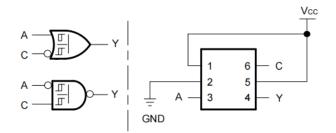


Figure 7. Inverter

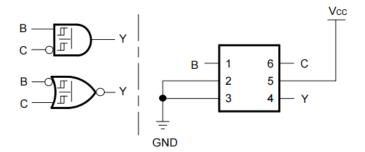


Figure 8. Buffer

Application and Implementation

Information in the following applications sections is not part of the RUNIC component specification, and RUNIC does not warrant its accuracy or completeness. RUNIC's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

The RS1G97 device offers flexible configuration for many design applications. This example describes basic power sequencing using the AND gate configuration. Power sequencing is often used in applications that require a processor or other delicate device with specific voltage timing requirements in order to protect the device from malfunctioning.

Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The RS1G97 allows for performing logical Boolean functions with digital signals. Maintain input signals as close as possible to either OV or $V_{\rm CC}$ for optimal operation.

Power Supply Recommendations

The power supply pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, a 0.1uF capacitor is recommended and if there are multiple V_{CC} terminals then 0.01uF or 0.022uF capacitors are recommended for each power terminal. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise . The 0.1µF and 1µF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power terminal as possible.

Layout

Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in Figure 9 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally, they will be tied to GND or $V_{\rm CC}$, whichever makes more sense or is more convenient. It is acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the outputs section of the part when asserted. This will not disable the input section of the I/OS so they also cannot float when disabled.

Layout Example

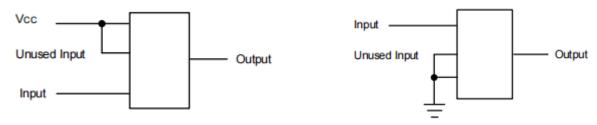
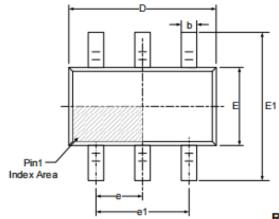
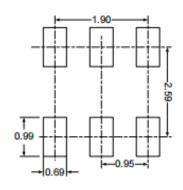
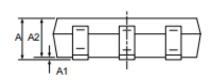
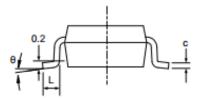
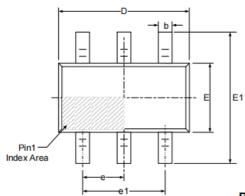




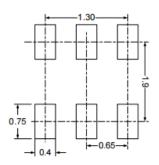
Figure 9. Layout Diagram



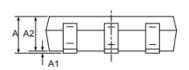

PACKAGE OUTLINE DIMENSIONS SOT23-6

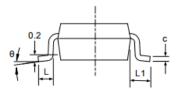
RECOMMENDED LAND PATTERN (Unit: mm)



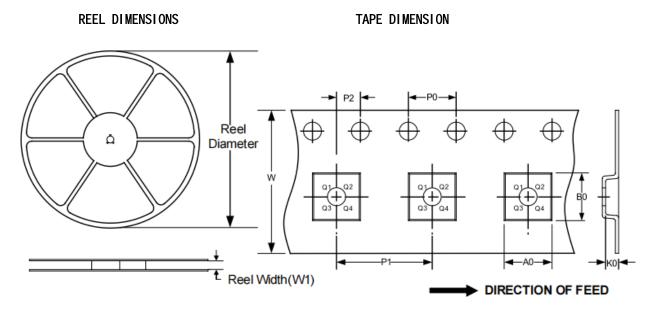


Cymbol	Dimensions Ir	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	1.050	1. 250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1. 150	0. 041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0. 200	0.004	0.008	
D	2.820	3. 020	0. 111	0. 119	
E	1.500	1. 700	0.059	0.067	
E1	2. 650	2. 950	0. 104	0. 116	
е	0. 950	(BSC)	0.037	(BSC)	
e1	1.800	2.000	0. 071	0.079	
L	0.300	0.600	0.012	0.024	
	0°	8°	0°	8°	




S0T363(SC70-6)

RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	Dimensions Ir	n Millimeters	Dimensions In Inches			
	Mi n	Max	Mi n	Max		
А	0.900	1.100	0.035	0.043		
A1	0.000	0.100	0.000	0.004		
A2	0.900	1.000	0.035	0.039		
b	0. 150	0.350	0.006	0.014		
С	0.080	0.150	0.003	0.006		
D	2.000	2. 200	0.079	0.087		
E	1.150	1.350	0.045	0.053		
E1	2. 150	2. 450	0.085	0.096		
е	0.650	(BSC)	0.026(BSC)			
e1	1.300	(BSC)	0.051(BSC)			
L	0. 260	0.460	0.010	0.018		
L1	0.5	525	0. 021			
	0°	8°	0°	8°		

NOTE:

- A. All linear dimension is in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

TAPE AND REEL INFORMATION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width(mm)	AO (mm)	BO (mm)	KO (mm)	PO (mm)	P1 (mm)	P2 (mm)	W (mm)	Pi n1 Quadrant
S0T363(SC70-6)	7' '	9.5	2.40	2.50	1. 20	4.0	4.0	2.0	8.0	03
S0T23-6	7' '	9.5	3. 17	3. 23	1. 37	4.0	4.0	2.0	8.0	Q3

NOTE:

- 1. All dimensions are nominal.
- 2. Plastic or metal protrusions of 0.15mm maximum per side are not included.