

产品规格说明书

Product Data Sheet

AOS0108Yxx

WEB | www.aossemi.cn <

も源管理IC 通信接口芯片

MOSFETs

运算放大器

显示驱动

MCU单片机

光电器件

AOS0108

8-Bit Bidirectional Voltage-Level Translator for Open Drain and Push-Pull Applications

DESCRIPTIONS

This 8-bit non-inverting translator is a bidirectional voltage level translator and can be used to establish digital switching compatibility between mixed-voltage systems. It uses two separate configurable power-supply rails, with the A ports supporting operating voltages from 1.65V to 5.5V while it tracks the V_{CCA} supply, and the B ports supporting operating voltages from 2.3V to 5.5V while it tracks the V_{CCB} supply. This allows the support of both lower and higher logic signal levels while providing bidirectional translation capabilities between any of the 1.8V, 2.5V, 3.3V and 5V voltage nodes.

When the output-enable (OE) input is low, all I/Os are placed in the high-impedance state, which significantly reduces the power-supply quiescent current consumption. OE has an internal pull-down current source, if V_{CCA} is powered.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The AOSO108 is available in Green QFN3*3-20L and TSSOP20 packages. It operates over an ambient temperature range of -40° C to $+85^{\circ}$ C.

FEATURES

- ★ No Direction-Control
- ★ Data Rates
 24Mbps (Push-Pull)
 2Mbps (Open-Drain)
- ★ 1.65V to 5.5V on A ports and 2.3V to 5.5V on B Ports ($V_{CCA} \le V_{CCB}$)
- \bigstar V α Isolation: If Either V α is at GND, Both Ports are in the High-Impedance State
- ★ No Power-Supply Sequencing Required: Either Vcca or Vccb can be Ramped First
- ★ I_{OFF}: Supports Partial-Power-Down Mode Operation
- ★ Extended Temperature: -40°C to +85°C

APPLICATIONS

- **★** Handset
- **★** Smartphone
- **★** Tablet
- ★ Desktop PC

Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
A0S0108	TSS0P20(20)	6.50mm×4.40mm
AU30106	QFN3*3-20L(20)	3.00mm×3.00mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

Functional Block Diagram

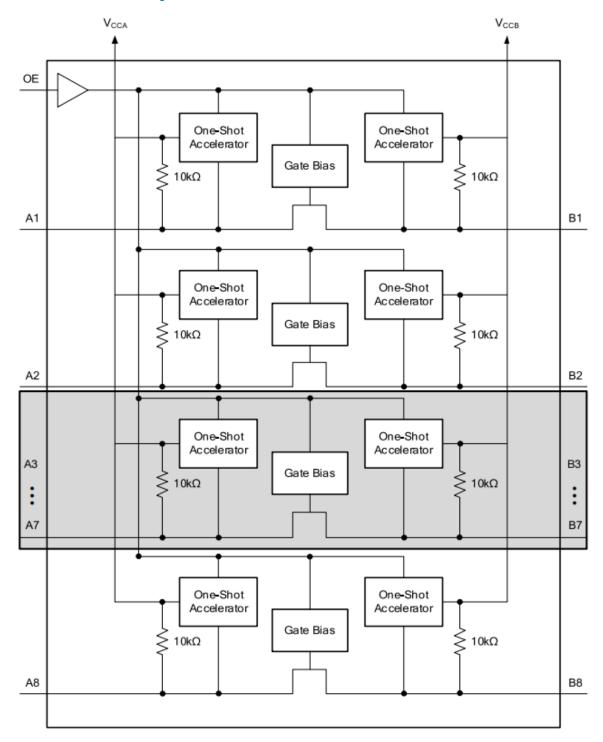
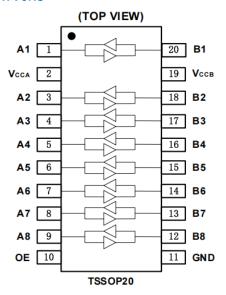
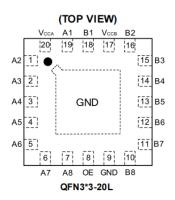


Figure 1. Function Block Diagram

AOS0108


Revision History


Note: Page numbers for previous revisions may different from page numbers in the current version

	Change Date	Change I tem
A. 1	2020/12/2	Initial version completed
A. 2	2021/01/09	Add Moisture Sensitivity Level information

PIN CONFIGURATIONS

PIN DESCRIPTION

	PIN							
TSS0P20	QFN3*3-20L	NAME	TYPE ⁽¹⁾	FUNCTION				
1	19	A1	1/0	Input/output A1. Reference to Vcca.				
2	20	Vcca	Р	A Port Supply Voltage.1.65V Vcca 5.5V and Vcca Vccb.				
3	1	A2	1/0	Input/output A2. Reference to Vcca.				
4	2	A3	1/0	Input/output A3. Reference to Vcca.				
5	3	A4	1/0	Input/output A4. Reference to Vcca.				
6	4	A5	1/0	Input/output A5. Reference to Vcca.				
7	5	A6	1/0	Input/output A6. Reference to Vcca.				
8	6	A7	1/0	Input/output A7. Reference to Vcca.				
9	7	A8	1/0	Input/output A8. Reference to Vcca.				
10	8	OE	I	Output Enable (Active High). Pull OE low to place all outputs in 3-state mode. Referenced to Vcca.				
11	9	GND	-	Ground.				
12	10	B8	1/0	Input/output B8. Reference to VCCB.				
13	11	В7	1/0	Input/output B7. Reference to VCCB.				
14	12	В6	1/0	Input/output B6. Reference to Vccb.				
15	13	B5	1/0	Input/output B5. Reference to Vccs.				

(续上表)

	PIN			
TSSOP20	QFN3*3-20L	NAME	TYPE ⁽¹⁾	FUNCTION
16	14	B4	1/0	Input/output B4. Reference to Vccb.
17	15	В3	1/0	Input/output B3. Reference to Vccb.
18	16	B2	1/0	Input/output B2. Reference to Vccb.
19	17	Vссв	Р	B Ports Supply Voltage.2.3V Vccb 5.5V.
20	18	B1	1/0	Input/output B1. Reference to Vccb.
-	Exposed Pad	GND		Exposed pad should be soldered to PCB board and connected to GND or left floating.

⁽¹⁾ I = i nput, 0 = output, I/O = i nput and output, P = power

AOS0108

SPECIFICATIONS

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)(1)

SYMBOL	PARAMETER		MIN	MAX	UNIT
Vcca	Supply Voltage Range		-0.3	6.0	
Vccb	Supply Voltage Range		-0.3	6.0	
		A port	-0.3	6.0	
V_1 (2)	Input Voltage Range	B port	-0.3	6.0	
		0E	-0.3	6.0	V
V (2)	Voltage range applied to any output in the high- impedance or power-off state	A port	-0.3	6.0	
Vo		B port	-0.3	6.0	
V ₀ ⁽²⁾⁽³⁾	Voltage range applied to any output in the high	A port	-0.3	Vcca+0.3	
V ₀ (2)(3)	or low state	B port	-0.3	Vccв+0. 3	
Lik	Input clamp current	V1<0		-50	
I ок	Output clamp current	V ₀ <0		-25	
l 0	Continuous output current		± 50	- mA	
	Continuous current through VccA, VccB or GND		± 100		
Tu	Junction Temperature ⁽⁴⁾			150	°C
T_{stg}	Storage temperature		-65	+150	$ ^{\circ}$

- (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of VCCA and VCCB are provided in the recommended operating conditions table.

ESD Ratings

				VALUE	UNIT
	V _(ESD) Electrostatic dis	- 1	Human-body model (HBM)	± 5000	
		Electrostatic discharge	Machine Model (MM)	± 400	V

AOS0108

Recommended Operating Conditions

 V_{CCI} is the supply voltage associated with the input port. V_{CCO} is the supply voltage associated with the output port.

PARAMETER	COI	NDI TI ONS	MIN	TYP	MAX	UNIT
Supply voltage ⁽¹⁾		Vcca	1.65		5.5	
Supply voltage		Vccв	2.3		5.5	
	A-port I/Os	Vcca= 1.65V to 1.95V Vccb= 2.3V to 5.5V	Vccı - 0. 2		Vccı	
High Loyal input valtage(Va)	A-port 170s	Vcca= 1.65V to 3.6V Vccb= 2.3V to 5.5V	Vccı - 0. 4		Vccı	
High-level input voltage(ViH)	B-port I/Os	Vcca= 1.65V to 3.6V Vccb= 2.3V to 5.5V	Vccı — 0. 4		Vccı	V
	OE input	Vcca= 1.65V to 3.6V Vccb= 2.3V to 5.5V	Vcca× 0.8		5.5	V
	A-port I/Os	Vcca= 1.65V to 3.6V Vccb= 2.3V to 5.5V	0		0. 15	
Low-level input voltage(V _{IL})	B-port I/Os	Vcca= 1.65V to 3.6V Vccb= 2.3V to 5.5V	0		0. 15	
	OE input	Vcca= 1.65V to 3.6V Vccb= 2.3V to 5.5V	0		Vcca × 0.25	
	A-port I/Os push-pull driving			10		
Input transition rise or fall rate(t/ v)		B-port I/Os push-pull driving			10	ns/V
	Control input			10		
T _A Operating	free-air tempera	ture	-40		85	$^{\circ}$

- (1) VCCA must be less than or equal to VCCB.
- (2) The maximum V_{1L} value is provided to ensure that a valid V_{0L} is maintained. The V_{0L} value is V_{1L} plus the voltage drop across the pass gate transistor.

AOS0108

PACKAGE/ORDERING INFORMATION

PRODUCT	ORDER I NG NUMBER	TEMPERATURE RANGE	PACKAGE LEADQFN	PACKAGE MARKING ⁽¹⁾	MSL ⁽²⁾	PACKAGE OPTION
1000100	A0S0108YTQC20	-40 ~+85	QFN3*3-20L	A0S0108	MSL3	Tape and Reel,5000
A0S0108	A0S0108YQ20	-40 ~+85	TSS0P20	A0S0108	MSL3	Tape and Reel,4000

NOTE:

- (1) There may be additional marking, which relates to the lot trace code information(data code and vendor code), the logo or the environmental category on the device.
- (2) MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

AOS0108

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted) $^{(1)}$ $^{(2)}$ $^{(3)}$

	PARAMETER	CONDITIONS	Vcca	Vccb	TEMP	MIN	TYP	MAX	UNI TS	
	I	I он= — 20 µ A	VCCA			IVIIIV			UNI 13	
Voha	Port A output high voltage	VIB VCCB — 0. 4V	1.65V to 5.5V	2.3V to 5.5V	Full	$V_{CCA} \times 0.7$		5.5		
Vola	Port A output low voltage	I oL= 1mA VIB 0.15V	1.65V to 5.5V	2.3V to 5.5V	Full			0.3	- V	
V _{ОНВ}	Port B output high voltage	I OH= - 20 µ A VIA VCCA - 0. 4V	1.65V to 5.5V	2.3V to 5.5V	Full	Vccb × 0.7			V	
Volb	Port B output Low voltage	I oL=1mA VIA 0.15V	1.65V to 5.5V	2.3V to 5.5V	Full			0.3		
1.	Input Leakage	OΓ	1 (EV +o E EV	2 2V +o F FV	+25℃			± 1		
Ιı	current	0E	1.65V to 5.5V	2.3V to 5.5V	Full			± 1.5		
		A Ports	OV	0V to 5.5V	+25℃			± 0.5		
loff	Partial power	A FOLES	OV	00 10 3.30	Full			± 1		
1011	down current	B Ports		0V to 5.5V	OV	+25℃			± 0.5	
	1121-		0.000		Full			± 1		
I oz	High- impedance State output	A or B port OE=OV	1.65V to 5.5V	2.3V to 5.5V	+25℃ Ful I			± 0.5 ± 1		
	current		1.65V to Vccb	2.3V to 5.5V	Full			2.0		
I cca	Vcca supply	Vı=Vo=open	5. 5V	0V	Full			2.0	μΑ	
I COA	current	I 0=0	0V	5. 5V	Full			-1	•	
			1.65V to Vccb	2.3V to 5.5V	Full			20		
I ссв	VccB supply	Vı=Vo=open	5. 5V	OV	Full			-1		
	current	I 0=0	OV	5. 5V	Full			1		
CCA + CCB	Combined supply current	V ₁ =V ₀ =open or GND I ₀ =0	1.65V to VccB	2.3V to 5.5V	Full			30	-	
I ccza	Vcca supply current	Vi= Vcci or OV I o=0, OE=OV	1.65V to VccB	2.3V to 5.5V	Ful I			1		
I ссzв	Vccs supply current	Vi=Vcci or 0V I o=0, 0E=0V	2.3V to 5.5V	2.3V to 5.5V	Ful I			1		
Сі	Input capaci tance	0E	3.3V	3.3V	+25℃		2.5			
Сто	Input-to- output	A port	3. 3V	3.3V	+25℃		5		pF	
UIU	internal capacitance	B port	3. 3V	3. 3V	+25℃		5		i.	

⁽¹⁾ V_{CCI} is the V_{CC} associated with the input port. (2) V_{CCO} is the V_{CC} associated with the output port (3) V_{CCA} must be less than or equal to V_{CCB} .

Timing Requirements

$V_{CCA}=1.8V \pm 0.15V$

		Vccв=2. 5V ± 0. 2V	Vccb=3. 3V ± 0. 2V	$V_{CCB}=5V\pm0.2V$	LIMILT
		TYP	TYP	TYP	UNIT
Data rate	Push-pull driving	21	22	24	Mhnc
	Open-drain driving	2	2	2	Mbps
Pulse	Push-pull driving(data inputs)	47	45	41	nc
duration(tw)	Open-drain driving(data inputs)	500	500	500	ns

$V_{\text{CCA}}{=}2.\,5V{\pm}\,0.\,15V$

		Vccb=2.5V±0.2V	Vccb=3. 3V ± 0. 2V	Vccb=5V ± 0. 2V	UNIT
		TYP	TYP	TYP	ONT
Data rate -	Push-pull driving	20	22	24	Mhnc
	Open-drain driving	2	2	2	Mbps
Pul se	Push-pull driving(data inputs)	50	45	41	nc
duration(tw)	Open-drain driving(data inputs)	500	500	500	ns

$V_{CCA}=3.3V\pm0.15V$

		Vccb=3. 3V ± 0. 2V	Vccb=5V ± 0. 2V	UNIT
		TYP	TYP	ONT
Data rate	Push-pull driving	23	24	Mhnc
	Open-drain driving	2	2	Mbps
Pul se	Push-pull driving(data inputs)	43	41	nc
duration(tw)	Open-drain driving(data inputs)	500	500	ns

$V_{CCA}=5V\pm0.15V$

		$V_{CCB}=5V\pm0.2V$	UNIT	
		TYP	UNII	
Data mata	Push-pull driving	24	Mbps	
Data rate	Open-drain driving	2		
Pul se	Push-pull driving(data inputs)	41	nc	
duration(tw)	Open-drain driving(data inputs)	500	ns	

Switching Characteristics: $V_{\text{CCA}}=1.8V\pm0.15V$

	PARAMETER	CONDITIONS -		Vccb=2.5V±0.2V	VccB=3. 3V± 0. 2V	Vccb=5V± 0. 2V	UNITS
	FARAWETER			TYP	TYP	TYP	UNITS
_	Propagation delay	A +- D	Push-pul I dri vi ng	2.5	3.1	4.5	
†PHL	time high-to-low output	A-to-B	Open-drain driving	26. 1	26. 4	26.6	
t pLH	Propagation delay time low-to-high	A-to-B	Push-pull driving	4.2	3.7	3.6	
	output		Open-drai n dri vi ng	221	183	143	
+	Propagationdelay	D +o A	Push-pull driving	2.1	2.0	2. 2	
t PHL	time high-to-low output	B-to-A	Open-drain driving	26. 1	26. 1	26.2	
t pLH	Propagation delay time low-to-high B-to-A output	R-to-A	Push-pul I dri vi ng	1.8	1.6	1.5	
LPLH		D-tO-A	Open-drain driving	173	89	66	
ten	Enable time	OE-to-A or B		25	21	19	
tdis	Disable time	OE-to-A or B		1250	1250	1250	ns
trA	Input rise time	A port	Push-pul I dri vi ng	6.9	6.1	5.6	
CIA	mpat 1136 time	rise time	Open-drai n dri vi ng	118	39	13	
trB	Input rise time	B port	Push-pul I dri vi ng	5.8	4.8	4.1	
LIB	Triput 113e triile	rise time	Open-drai n dri vi ng	166	127	75	
+	Input fall time	A port	Push-pul I dri vi ng	3.0	2.8	2.7	
trA	imput rari time	fall time	Open-drain driving	1.9	1.7	1.6	
+	Innut fall time	B port	Push-pul I dri vi ng	4.8	6.2	8.4	
tfB	Input fall time	fall time	0pen-drain dri vi ng	2.3	2.4	2.8	
tsk(0)	Skew(time),output	Channel -to-Channel Skew		0.5	0.5	0.5	
1.1 ~	vimum data sata	Push-pu	ıll driving	21	22	24	Mbss
IVIA	ximum data rata	0pen-dr	ain driving	2	2	2	Mbps

Switching Characteristics: $V_{\text{CCA}}=2.5V\pm0.15V$

	PARAMETER	CONDITIONS		Vccb=2.5V±0.2V	Vccb=3.3V±0.2V	Vccb=5V ± 0. 2V	UNITS
	17tto une l'elix			TYP	TYP	TYP	om re
+~	Propagation delay	A-to-B	Push-pull driving	2.8	3. 4	5.0	
†PHL	time high-to-low output	A-IU-D	Open-drain driving	26.3	26.5	26.6	
t pLH	Propagation delay time low-to-high	A-to-B	Push-pul I dri vi ng	2.7	2.5	2.4	
	output		Open-drain driving	198	169	131	
t PHL	Propagation delay time high-to-low	B-to-A	Push-pull driving	2.5	2.4	2.5	
LPHL	output	D- tO-A	0pen-drai n dri vi ng	26. 4	26.5	26.6	
t pLH	Propagation delay	B-to-A	Push-pull dri vi ng	2.1	2.0	1.9	
CFEII	output	D to A	0pen-drai n dri vi ng	196	138	63	
ten	Enable time	OE-to-A or B		24	20	17	
t _{dis}	Disable time	0E-t	o-A or B	1250	1250	1250	ns
trA	Input rise time	A port	Push-pull driving	3.4	2.9	2.7	
LFA	Triput 113e trille	rise time	0pen-drain driving	156	92	13	
t rB	Input rise time	B port	Push-pull dri vi ng	4.7	3.5	2.7	
CIB	Tiput 1130 triile	rise time	0pen-drain driving	160	124	81	
tra	Input fall time	A port	Push-pull driving	5.1	5.2	5.0	
CIA	Tiput rair time	fall time	0pen-drain driving	2.1	2.0	1.8	
trB	Input fall time	B port	Push-pull dri vi ng	5.0	6.4	8.7	
CIB		fall time	0pen-drain driving	2.0	2.2	2.8	
t _{sk(0)}	Skew(time),output	Channel -to-Channel Skew		0.5	0.5	0.5	
1.7		Push-pu	ıll driving	20	22	24	Mlass
Ma	Maximum data rata Open-drain driving		2	2	2	Mbps	

Switching Characteristics: $V_{\text{CCA}}=3.3V\pm0.3V$

	PARAMETER	CONDITIONS		Vccb=3. 3V ± 0. 2V	Vccb=5V± 0. 2V	UNITS
	PARAMETER			TYP	TYP	UNITS
t PHL	Propagation delay time high-to-low	A-to-B	Push-pul I dri vi ng	3.6	5.1	
L PHL	output	A-10-D	Open-drain driving	26.4	26.6	
t PLH	Propagation delay time low-to-high	A-to-B	Push-pul I dri vi ng	2.3	2.1	
	output		Open-drain driving	155	109	
† _{PHL}	Propagation delay time high-to-low	B-to-A	Push-pull dri vi ng	3.1	3.3	
L PHL	output	D-10-A	Open-drain driving	26.5	26.7	
t pLH	Propagation delay time low-to-high output	B-to-A	Push-pull driving	1.9	1.8	
LPLH		D-10-A	Open-drain driving	158	87	
ten	Enable time	0E-to-A	OE-to-A or B		15	
tdis	Disable time	0E-to-A	or B	1250	1250	ns
trA	Input rise time	A port rice time	Push-pul I dri vi ng	2.3	2.1	
LrA		A port rise time	0pen-drain dri vi ng	117	48	
t _{rB}	Input rise time	B port rise time	Push-pul I dri vi ng	3.0	2.4	
CIB	input 113e time	b port 113e trille	0pen-drai n dri vi ng	117	75	
± a.		A port fall time	Push-pul I dri vi ng	8.0	7.6	
tfA	Input fall time	A port fall time	Open-drain driving	2. 2	2.1	
t _{fB}	Input fall time	B port fall time	Push-pull dri vi ng	8. 2	10.8	
r.l.R	πραι τατι τιπε	b port rair trille	Open-drain driving	2.1	2.4	
t _{sk(0)}	Skew(time), output	Channel -to-Channel Skew		0.5	0.5	
Ma	vimum data rata	Push-pul I	driving	23	24	Mbnc
IVIA	ximum data rata	Open-drain	driving	2	2	Mbps

Switching Characteristics: $V_{\text{CCA}}=5.0V\pm0.35V$

	PARAMETER CONDITIONS		Vccb=5V± 0. 2V	UNITS	
	PARAME I ER	CON	DITIONS	ТҮР	UNITS
t _{PHL}	Propagation delay time	A-to-B	Push-pull driving	5.6	
L PHL	high-to-low output	A-10-D	Open-drain driving	26.8	
t plH	Propagation delay time low-to- high output	A-to-B	Push-pull driving	2.0	
	m gir output		Open-drain driving	155	
_	Propagation delay time high-to-low	D +o A	Push-pull driving	5.8	
t _{PHL}	output	B-to-A	Open-drain driving	27.5	
t pLH	Propagation delay time low	B-to-A	Push-pull driving	1.8	
Creii	-to-high output	D to K	Open-drain driving	160	
ten	Enable time	0E-t	o-A or B	17	
tdis	Disable time	0E-to	o-A or B	1250	ns
trA	Input rise time	Input rise time	Push-pull driving	1.9	
LTA	Triput 113e triile	A port 113e time	Open-drain driving	105	
t _{rB}	Input rise time	B port rise time	Push-pull driving	2.3	
€ LR	Triput Trise trille	b port rise time	Open-drain driving	95	
ta	Input fall time	A port fall time	Push-pull driving	9.0	
tfA	input rail time	A port rail time	Open-drain driving	2.6	
tfB	Input fall time	B port fall time	Push-pull driving	8.9	
r. LR	input rail tille	Б рогі тап інше	Open-drain driving	2.5	
t _{sk(0)}	Skew(time),output	Channel -to	o-Channel Skew	0.5	
	Push-pull driving		ıll driving	24	Mhnc
	Maximum data rata	Open-dra	ain driving	2	Mbps

Parameter Measurement Information

Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:

- PRR 10MHz
- Z0 = 50
- $dv/dt \ge 1V/ns$

Note: All input pulses are measured one at a time, with one transition per measurement.

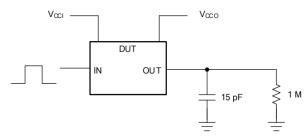


Figure 2. Data Rate, Pulse Duration, Propagation Delay, Output Rise And Fall Time Measurement Using A Push-Pull Driver

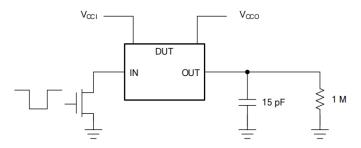
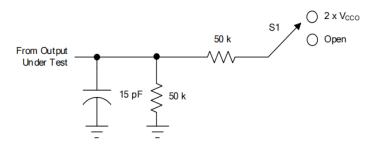


Figure 3. Data Rate, Pulse Duration, Propagation Delay, Output Rise And Fall Time Measurement Using An Open-Drain Driver



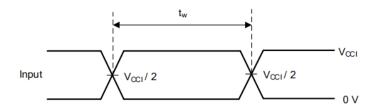

Figure 4. Load Circuit For Enable/Disable Time Measurement

Table 1. Switch Configuration For Enable/Disable Timing

TEST	S1
tpzl ⁽¹⁾ , tplz ⁽²⁾	2×Vcco
†PHZL ⁽¹⁾ , †PZH ⁽²⁾	0pen

- (1) t_{PZL} and t_{PZH} are the same as t_{en} .
- (2) tPLZ and tPHZ are the same as tdis.

(1) All input pulses are measured one at a time, with one transition per measurement.

Figure 5. Voltage Waveforms Pulse Duration

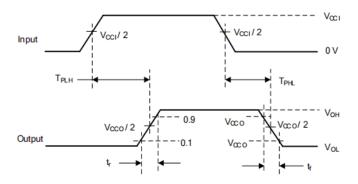


Figure 6. Voltage Waveforms Propagation Delay Times

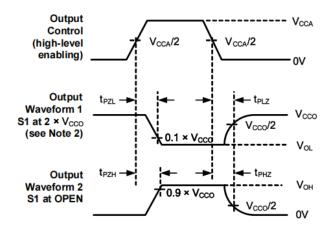


Figure 7. Voltage Waveforms Enable And Disable

Feature Description

Overvi ew

The AOSO108 device is a directionless voltage-level translator specifically designed for translating logic voltage levels. The A port is able to accept I/O voltages ranging from 1.65 V to 5.5V, while the B port can accept I/O voltages from 2.3V to 5.5V. The device is a pass-gate architecture with edge-rate accelerators (one-shots) to improve the overall data rate. 10-k pullup resistors, commonly used in open-drain applications, have been conveniently integrated so that an external resistor is not needed. While this device is designed for open-drain applications, the device can also translate push-pull CMOS logic outputs.

Archi tecture

The AOSO108 architecture (see Figure 8) is an auto-direction-sensing based translator that does not require a direction-control signal to control the direction of data flow from A to B or from B to A. These two bidirectional channels independently determine the direction of data flow without a direction-control signal. Each I/O pin can be automatically reconfigured as either an input or an output, which is how this auto-direction feature is realized.

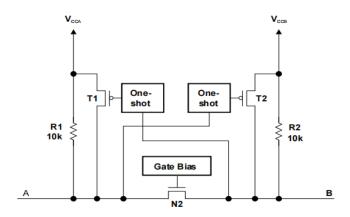


Figure 8. Architecture of a AOSO108 Cell

The AOSO108 employs two key circuits to enable this voltage translation:

- 1) An N-channel pass-gate transistor topology that ties the A-port to the B-port
- 2) Output one-shot (0.S.) edge-rate accelerator circuitry to detect and accelerate rising edges on the A or B Ports.

Input Driver Requirements

The continuous dc-current "sinking" capability is determined by the external system-level open-drain (or push-pull) drivers that are interfaced to the AOSO108 I/O pins. Since the high bandwidth of these bidirectional I/O circuits is used to facilitate this fast change from an input to an output and an output to an input, they have a modest dc-current "sourcing" capability of hundreds of micro-Amps, as determined by the internal 10-k pullup resistors. The fall time (t_{fA} , t_{fB}) of a signal depends on the edge-rate and output impedance of the external device driving AOSO108 data I/Os, as well as the capacitive loading on the data lines.

Similarly, the t_{PHL} and max data rates also depend on the output impedance of the external driver. The values for t_{FA} , t_{FB} , t_{PHL} , and maximum data rates in the data sheet assume that the output impedance of the external driver is less than 50 .

AOS0108

Feature Description Output Load Considerations

We recommend careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading and to ensure that proper O.S. triggering takes place. PCB signal trace-lengths should be kept short enough such that the round-trip delay of any reflection is less than the one-shot duration. This improves signal integrity by ensuring that any reflection sees a low impedance at the driver. The O.S. circuits have been designed to stay on for approximately 30 ns. The maximum capacitance of the lumped load that can be driven also depends directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is driven fully to the positive rail. The O.S. duration has been set to best optimize trade-offs between dynamic $I\alpha$, load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to the capacitance that the AOSO108 device output sees, so it is recommended that this lumped-load capacitance be considered to avoid 0. S. retriggering, contention, output signal oscillations, or other adverse bus systemlevel affects.

Enable and Disable

The AOSO108 device has an OE input that is used to disable the device by setting OE low which places all I/Os in the Hi-Z state. The disable time (t_{dis}) indicates the delay between the time when OE goes low and when the outputs are disabled (Hi-Z). The enable time (t_{en}) indicates the amount of time the user must allow for the oneshot circuitry to become operational after OE is taken high.

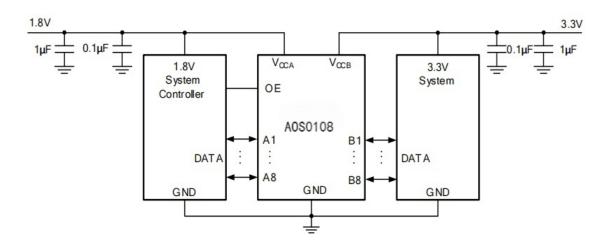
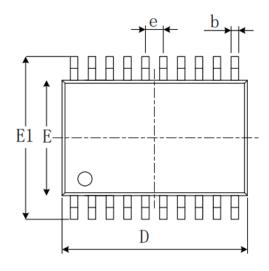
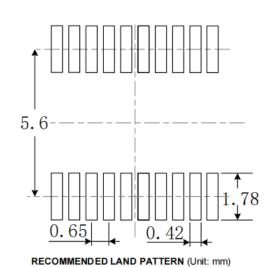
Pullup or Pulldown Resistors on I/O Lines

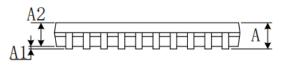
Each A-port I/O has an internal 10-k pullup resistor to V_{CCA} , and each B-port I/O has an internal 10-k pullup resistor to V_{CCB} . If a smaller value of pullup resistor is required, an external resistor must be added from the I/O to V_{CCA} or V_{CCB} (in parallel with the internal 10-k resistors). Adding lower value pull-up resistors will affect V_{OL} levels, however. The internal pull-ups of the AOSO108 are disabled when the OE pin is low.

Application Information

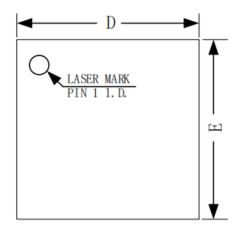
The AOSO108 device can be used to bridge the digital-switching compatibility gap between two voltage nodes to successfully interface logic threshold levels found in electronic systems. It should be used in a point-to-point to pology for interfacing devices or systems operating at different interface voltages with one another. Its primary target application use is for interfacing with open-drain drivers on the data I/Os such as I2C or 1-wire, where the data is bidirectional and no control signal is available. The device can also be used in applications where a push-pull driver is connected to the data I/Os, but the AOSO108 might be a better option for such push-pull applications.

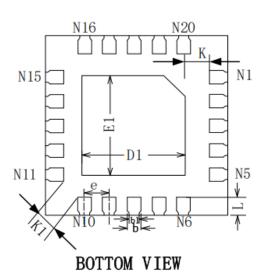
Typical Application

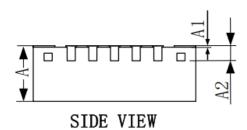





Figure 9. Typical Application Circuit

PACKAGE OUTLINE DIMENSIONS TSSOP-20




Symbol	Dimensions In	n Millimeters	Di mensi ons	In Inches
Symbol	Mi n	Max	Min	Max
А		1. 200		0.047
A1	0.050	0. 150	0.002	0.006
A2	0.800	1.050	0.031	0.041
b	0.200	0. 280	0.008	0.011
С	0.130	0.170	0.005	0.007
D	6. 400	6.600	0. 252	0. 260
E	4.300	4.500	0.169	0. 177
E1	6. 200	6.600	0. 244	0. 260
е	0.650(BSC)		0.026	(BSC)
L	0.450	0. 750	0.018	0.030
Н	0. 250(TYP)		0.010	(TYP)
	0°	8°	0°	8°



QFN3*3-20L

TOP VIEW

Symbol	Dimensions In	n Millimeters	Di mensi ons	In Inches
Symbol	Min	Max	Min	Max
А	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A2	0. 203	REF	0.008	3 REF
D	2. 950	3.050	0. 116	0.120
E	2. 950	3.050	0.116	0.120
D1	1.550	1. 650	0.061	0.065
E1	1.550	1. 650	0.061	0.065
K	0.300 REF		0. 012	2 REF
K1	0.400) REF	EF 0.016 REF	
b	0. 150	0. 250	0.006	0. 010
b1	0.150	0. 150 REF		5 REF
е	0.400	0.400 BSC		5 BSC
L	0.350	0. 450	0.014	0. 018