

产品规格说明书

Product Data Sheet

AOS0104Yxx

WEB | www.aossemi.cn <

も源管理IC 通信接口芯片

MOSFETs

运算放大器

显示驱动

MCU单片机

光电器件

4-Bit Bidirectional Voltage-Level Translator for Open Drain and Push-Pull Applications

DESCRIPTIONS

This 4-bit non-inverting translator is a bidirectional voltage level translator and can be used to establish digital switching compatibility between mixed-voltage systems. It uses two separate configurable power-supply rails, with the A ports supporting operating voltages from 1.65V to 5.5V while it tracks the V_{CCA} supply, and the B ports supporting operating voltages from 2.3V to 5.5V while it tracks the V_{CCB} supply. This allows the support of both lower and higher logic signal levels while providing bidirectional translation capabilities between any of the 1.8V, 2.5V, 3.3V and 5V voltage nodes.

When the output-enable (OE) input is low, all I/Os are placed in the high-impedance state, which significantly reduces the power-supply quiescent current consumption. OE has an internal pull-down current source, as long as V_{CCA} is powered.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull- down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

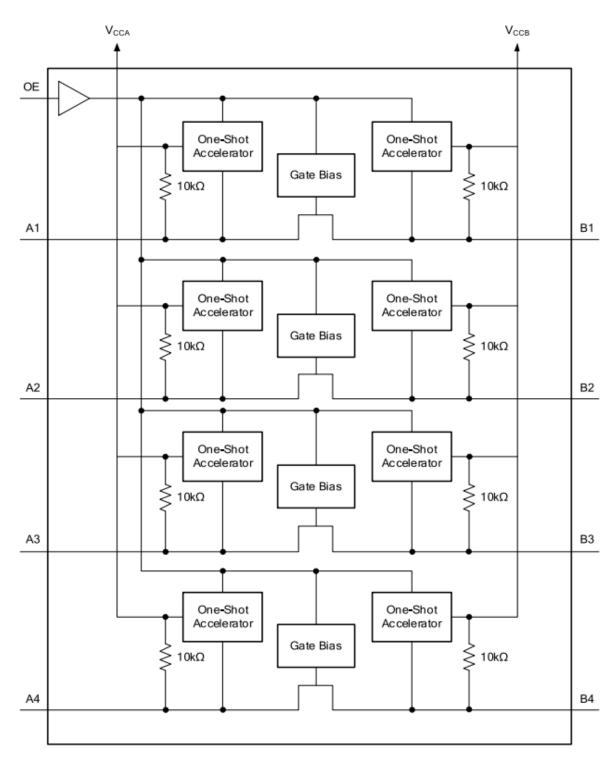
The AOSO104 is available in Green QFN3.5x3.5-14L, QFN2x2-12L, QFN2x1.7-12L and TSSOP -14 packages. It operates over an ambient temperature range of -40° C to $+85^{\circ}$ C.

FEATURES

- ★ No Direction-Control
- ★ Data Rates 24Mbps (Push-Pull) 2Mbps (Open-Drain)
- \bigstar 1.65V to 5.5V on A ports and 2.3V to 5.5V on B Ports (Vcca \leq Vccb)
- \bigstar V α Isolation: If Either V α is at GND, Both Ports are in the High-Impedance State
- ★ No Power-Supply Sequencing Required: Either Vcca or Vccb can be Ramped First
- ★ I_{OFF}: Supports Partial-Power-Down Mode Operation
- ★ Extended Temperature: -40°C to +85°C

APPLICATIONS

- **★** Handset
- **★** Smartphone
- ★ Tablet
- ★ Desktop PC


Device Information (1)

PART NUMBER	PACKAGE	BODY SIZE (NOM)
	QFN3.5x3.5-14L	3.50mm $ imes 3.50$ mm
1050104	QFN2x2-12L	2.00mm $ imes 2.00$ mm
A0S0104	QFN2x1.7-12L	2.00mm×1.70mm
	TSSOP-14	5.00mm × 4.40mm

(1) For all available packages, see the orderable addendum at the end of the data sheet.

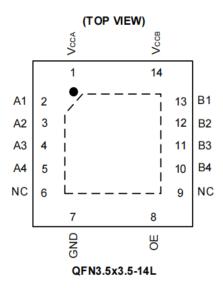
Functional Block Diagram

Block Diagram

Revision History

Note: Page numbers for previous revisions may different from page numbers in the current version.

VERSI ON	Change Date	Change Item
A. 1	2020/11/03	Initial version completed
A. 2	2021/01/09	Add Moisture Sensitivity Level information
A. 3	2021/04/02	Add QFN2x1.7-12L package
A. 4	2021/10/12	1. Change QFN3.5x3.5-14L PACKAGE OPTION 2. Add TAPE AND REEL INFORMATION
A. 5	2021/11/01	1. Change Recommended Operating Conditions in Page 9@A. 4Version. 2. Add Typical Characteristics
A. 6	2022/03/29	Change QFN3.5x3.5-14L PACKAGE thickness spec
B. 1	2022/09/01	Version updated

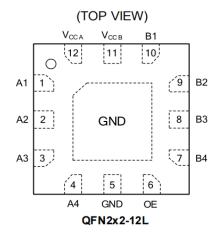

PACKAGE/ORDERING INFORMATION

PRODUCT	ORDERING NUMBER	TEMPERATURE RANGE	PACKAGE LEADQFN	PACKAGE MARKING ⁽²⁾	MSL ⁽³⁾	PACKAGE OPTION
	AOSO104YTQF14	-40℃~+85℃	3. 5x3. 5-14L	A0S0104	MSL3	Tape and Reel, 5000
A0S0104	AOSO104YTQE12	-40℃~+85℃	QFN2x2-12L	0104	MSL3	Tape and Reel, 3000
AU30104	AOSO104YUTQH12	-40℃~+85℃	QFN2x1.7-12L	0104	MSL3	Tape and Reel, 4000
	A0S0104YQ	-40°C∼+85°C	TSSOP-14	A0S0104	MSL3	Tape and Reel, 4000

NOTE:

- (1) This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the right-hand navigation.
- (2) There may be additional marking, which relates to the lot trace code information (data code and vendor code), the logo or the environmental category on the device.
- (3)MSL, The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications.

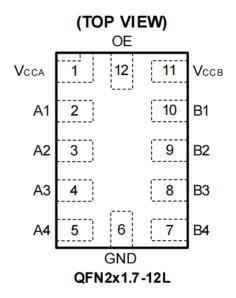
PIN CONFIGURATIONS


PIN DESCRIPTION

PIN NAME		TYPE ⁽¹⁾	FUNCTI ON				
QFN3. 5x3. 5-14L	INCHIL	111.	10101101				
1	Vcca	Р	A Port Supply Voltage. 1. 65V Vcca 5. 5V and Vcca Vccb.				
2	A1	1/0	nput/output A1. Reference to Vcca.				
3	A2	1/0	Input/output A2. Reference to Vcca.				
4	А3	1/0	Input/output A3. Reference to Vcca.				
5	A4	1/0	Input/output A4. Reference to Vcca.				
6	NC	-	o internal connection.				
7	GND	-	Ground.				
8	0E	I	Output Enable (Active High). Pull OE low to place all outputs in 3-state mode. Referenced to Vcca.				
9	NC	-	No internal connection.				
10	B4	1/0	Input/output B4.Reference to Vccb.				
11	В3	1/0	Input/output B3. Reference to Vccb.				
12	B2	1/0	Input/output B2. Reference to VccB.				
13	B1	1/0	Input/output B1. Reference to Vccb.				
14	Vccb	Р	B Ports Supply Voltage. 2.3V Vccb 5.5V.				
-	Thermal Pad	-	Exposed pad should be soldered to PCB board and connected to GND or left floating.				

(1) I = input, O = output, I/O = input and output, P = power

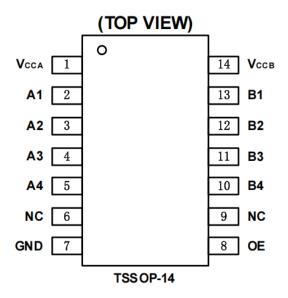
PIN CONFIGURATIONS


PIN DESCRIPTION

PIN						
QFN2x2-12L	NAME	TYPE ⁽¹⁾	FUNCTI ON			
1	A1	1/0	Input/output A1. Reference to Vcca.			
2	A2	1/0	nput/output A2. Reference to Vcca.			
3	А3	1/0	Input/output A3. Reference to Vcca.			
4	A4	1/0	nput/output A4. Reference to Vcca.			
5	GND	-	round.			
6	0E	I	Output Enable (Active High). Pull OE low to place all outputs in 3-state mode. Referenced to Vcca.			
7	B4	1/0	Input/output B4. Reference to Vccb.			
8	В3	1/0	Input/output B3. Reference to Vccb.			
9	B2	1/0	Input/output B2. Reference to Vccs.			
10	B1	1/0	Input/output B1. Reference to Vccb.			
11	Vccb	Р	B Ports Supply Voltage. 2. 3V VCCB 5. 5V.			
12	Vcca	Р	A Port Supply Voltage. 1.65V Vcca 5.5V and Vcca Vccb.			
Exposed Pad	GND	-	Exposed pad should be soldered to PCB board and connected to GND orleft floating.			

(1) I = input, 0 = output, I/O = input and output, P = power

PIN CONFIGURATIONS


PIN DESCRIPTION

PIN	NAME	TYPE ⁽¹⁾	FUNCTI ON				
QFN2x1.7-12L	IVAME	TIPE	FUNCTION				
1	Vcca	Р	A Port Supply Voltage. 1.65V Vcca 5.5V and Vcca Vccb.				
2	A1	1/0	Input/output A1. Reference to Vcca.				
3	A2	1/0	Input/output A2. Reference to Vcca.				
4	А3	1/0	Input/output A3. Reference to Vcca.				
5	A4	1/0	Input/output A4. Reference to Vcca.				
6	GND	-	Ground.				
7	B4	1/0	Input/output B4. Reference to Vccb.				
8	В3	1/0	Input/output B3. Reference to Vccb.				
9	B2	1/0	Input/output B2. Reference to Vccb.				
10	B1	1/0	Input/output B1. Reference to Vccb.				
11	Vccb	Р	B Ports Supply Voltage. 2.3V Vccb 5.5V.				
12	0E	I	Output Enable (Active High). Pull OE low to place all outputs in 3-state mode. Referenced to Vcca.				

(1) I = input, 0 = output, I/O = input and output, P = power

PIN CONFIGURATIONS

PIN DESCRIPTION

PIN TSSOP-14	NAME	TYPE ⁽¹⁾	FUNCTI ON		
1	Vcca	Р	A Port Supply Voltage. 1.65V Vcca 5.5V and Vcca Vccb		
2	A1	1/0	Input/output A1. Reference to Vcca.		
3	A2	1/0	nput/output A2. Reference to Vcca.		
4	А3	1/0	put/output A3. Reference to Vcca.		
5	A4	1/0	Input/output A4. Reference to Vcca.		
6	NC	-	o internal connection.		
7	GND	-	Ground.		
8	0E	I	Output Enable(Active High). Pull OE low to place all outputs in 3-state mode. Referenced to Vcca.		
9	NC	-	No internal connection.		
10	B4	1/0	Input/output B4. Reference to Vccb.		
11	В3	1/0	Input/output B3. Reference to Vccb.		
12	B2	1/0	Input/output B2. Reference to VccB.		
13	B1	1/0	Input/output B1. Reference to Vccb.		
14	Vccb	Р	B Ports Supply Voltage. 2.3V Vccb 5.5V.		

(1) I = input, 0 = output, I/O = input and output, P = power

AOS0104

SPECIFICATIONS

Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)(1)

SYMBOL	PARAMETER		MIN	MAX	UNIT
Vcca	Supply Voltage Range		-0.3	6.0	
Vccb	Supply Voltage Range		-0.3	6.0	
		A port	-0.3	6.0	
$V_{I}^{(2)}$	Voltage range applied to any output in the high-	B port	-0.3	6.0	
		-0.3	6.0	V	
Vo ⁽²⁾	Voltage range applied to any output in the high-	A port	-0.3	6.0	
V 0 ⁽⁻⁾	impedance or power-off state	B port	-0.3	6.0	
V ₀ ⁽²⁾⁽³⁾	Voltage range applied to any output in the high	A port	-0.3	Vcca+0.3	
V ₀ (2)(3)	or low state	B port	-0.3	0.3 Vcca+0.3 0.3 Vccb+0.3	
Lik	Input clamp current	Vı<0		-50	
І ок	Output clamp current	V ₀ <0		-50	0
I 0	Continuous output current			± 50	- mA
	Continuous current through Vcca, Vccb or GND			± 100	
TJ	Junction Temperature ⁽⁴⁾		-40	150	°C
Tstg	Storage temperature		-65	+150	$\frac{1}{2}$ °C

- (1) Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions*. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- (2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
- (3) The value of VCCA and VCCB are provided in the recommended operating conditions table.
- (4) The maximum power dissipation is a function of $T_{J(MAX)}$, R_{JA} , and T_{A} . The maximum allowable power dissipation at any ambient temperature is $P_{D} = (T_{J(MAX)} T_{A}) / R_{JA}$. All numbers apply for packages soldered directly onto a PCB.

ESD Ratings

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

AOS0104

			VALUE	UNIT
		Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	± 6000	
V(ESD) Electrostatic	Electrostatic discharge	Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002 ⁽²⁾		V
		Machine Model (MM)	± 400	1

- (1) JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

ESD SENSITIVITY CAUTION

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

Recommended Operating Conditions

 V_{CCI} is the supply voltage associated with the input port. V_{CCO} is the supply voltage associated with the output port.

PARAMETER	CO	NDITIONS	MIN	TYP	MAX	UNIT
Supply voltage ⁽¹⁾		Vcca	1.65		5.5	
Supply vol tage		Vccb	2.3		5.5	ı
	1 nort 1/0c	Vcca= 1.65V to 1.95V Vccb= 2.3V to 5.5V	Vccı — 0. 2		Vccı	
High Loyal input valtage(V.)	A-port I/Os	V _{CCA} = 1.65V to 3.6V V _{CCB} = 2.3V to 5.5V	Vccı — 0. 4		Vccı	
High-level input voltage(ViH)	B-port I/Os	Vcca= 1.65V to 3.6V Vccb= 2.3V to 5.5V	Vccı — 0. 4		Vccı	V
	OE input	V _{CCA} = 1.65V to 3.6V V _{CCB} = 2.3V to 5.5V	VCCA × 0.8		5.5	V
	A-port I/Os	V _{CCA} = 1.65V to 3.6V V _{CCB} = 2.3V to 5.5V	0		0.15	
Low-level input voltage(V _{IL})	B-port I/Os	V _{CCA} = 1.65V to 3.6V V _{CCB} = 2.3V to 5.5V	0		0.15	
	OE input	Vcca= 1.65V to 3.6V Vccb= 2.3V to 5.5V	0		Vcca× 0. 25	
		A-port I/Os push-pull driving			10	
Input transition rise or fal	B-port I/Os push-pull driving			10	ns/V	
		Control input			10	
T _A Operating	free-air temper	ature	-40		85	$^{\circ}$

⁽¹⁾ VCCA must be less than or equal to VCCB.

⁽²⁾ The maximum V_{1L} value is provided to ensure that a valid V_{0L} is maintained. The V_{0L} value is V_{1L} plus the voltage drop across the pass gate transistor.

AOS0104

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted) $^{\scriptscriptstyle{(1)}}$ $^{\scriptscriptstyle{(2)}}$ $^{\scriptscriptstyle{(3)}}$

	PARAMETER	CONDITIONS	Vcca	Vccв	TEMP	MIN	TYP	MAX	UNI TS	
Voha	Port A output high voltage	I он= - 20 µ A VIB VCCB - 0.4V	1.65V to 5.5V	2.3V to 5.5V	Full	Vcca × 0.7		5.5		
Vola	Port A output Iow voltage	I oL= 1mA VIB 0.15V	1.65V to 5.5V	2.3V to 5.5V	Ful I			0.3		
Vонв	Port B output high voltage	1 OH= - 20 \(\text{A} \) VIA \(\text{VCCA} - 0.2 \)	1.65V to 5.5V	2.3V to 5.5V	Full	Vccb × 0.			V	
Volb	Port B output low voltage	I oL=1mA Via 0.15V	1.65V to 5.5V	2.3V to 5.5V	Full			0.3		
L	Input Leakage	0E	1.65V to 5.5V	2.3V to 5.5V	+25℃			± 1		
11	current	UE UE	1.050 to 5.50	2.30 10 5.50	Full			± 1.5		
		A Ports	OV	0V to 5.5V	+25℃			± 0.5		
loff	Partial power	A FULLS	OV	00 10 5.50	Full			± 1		
1011	down current	B Ports	0V to 5.5V	OV	+25℃			± 0.5		
		D 1 01 to	0. 10 0.0.		Ful I			± 1		
l oz ⁽⁶⁾	High-impedance State output current	A or B port OE=OV	1.65V to 5.5V	2.3V to 5.5V	+25℃ Ful I			± 0.5 ± 1		
	Current		1.65V to Vccb	2.3V to 5.5V	Full			1.0		
I cca	Vcca supply	V ₁ =V ₀ =open I ₀ =0								μΑ
I CCA	current		5. 5V 0V	0V 5.5V	Ful I Ful I			1.0	- μπ	
1	Vccb supply	Vı=Vo=open	1.65V to Vccb	2.3V to 5.5V	Full			10	-	
I ссв	current	I 0=0	5. 5V	0V	Full			-1	_	
1	Combi ned		OV	5.5V	Full			1		
CCA + CCB	supply current	V ₁ =V ₀ =open I ₀ =0	1.65V to VccB	2.3V to 5.5V	Full			15		
I CCZA	Vcca supply current	V _I = V _{CCI} or OV I ₀ =0, OE=0V	1.65V to VccB	2.3V to 5.5V	Ful I			1		
I ссzв	Vccв supply current	Vi=Vcci or 0V I o=0, 0E=0V	2.3V to 5.5V	2.3V to 5.5V	Full			1		
Сі	Input capaci tance	0E	3.3V	3.3V	+25℃		2.5		- pF	
C	Input-to- output	A port	3. 3V	3. 3V	+25℃		5		۲'	
С10	internal capacitance	B port	3.3V	3.3V	+25℃		5			

- (1) V_{CCI} is the V_{CC} associated with the input port.
- (2) V_{CCO} is the V_{CC} associated with the output port
- (3) V_{CCA} must be less than or equal to V_{CCB}.

 (4) Limits are 100% production tested at 25°C. Limitsovertheoperatingtemperature rangeareensuredthroughcorrelationsusingstatistical quality control (SQC) method.
- (5) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration.
- (6) For I/O ports, the parameter I_{OZ} includes the input leakage current.

Timing Requirements

$VCCA=1.8V \pm 0.15V$

		Vccb=2.5V ± 0.2V	Vccb=3. 3V ± 0. 2V	$V_{CCB}=5V\pm0.2V$	UNIT
		TYP	TYP	TYP	UNII
Data wata	Push-pull driving	21	22	24	Mhnc
Data rate	Open-drain driving	2	2	2	Mbps
Pul se P	Push-pull driving(data inputs)	47	45	41	nc
duration(tw)	Open-drain driving(data inputs)	500	500	TYP 24 2	ns

$VCCA=2.5V\pm0.15V$

		Vccb=2.5V±0.2V	Vccb=3. 3V ± 0. 2V	Vccb=5V ± 0. 2V	UNIT	
		TYP	TYP	TYP	ONT	
Data rate	Push-pull driving	20	22	24	Mbps	
	Open-drain driving	2	2	2		
Pul se	Push-pull driving(data inputs)	50	45	41	nc	
duration(tw)	Open-drain driving(data inputs)	500	500	500	ns	

VCCA=3. $3V \pm 0.15V$

		Vccb=3. 3V ± 0. 2V	Vccb=5V ± 0. 2V	UNIT	
		TYP	TYP	ONT	
Data rate —	Push-pull driving	23	24	Mbps	
	Open-drain driving	2	2		
Pulse duration(tw)	Push-pull driving(data inputs)	43	41	m.c	
	Open-drain driving(data inputs)	500	500	ns	

$VCCA=5V\pm0.15V$

		$V_{CCB}=5V\pm0.2V$	UNIT	
		ТҮР	ONT	
Data mata	Push-pull driving	24	Mara	
Data rate	Open-drain driving	2	Mbps	
Pulse duration(tw)	Push-pull driving(data inputs)	41	nc	
	Open-drain driving(data inputs)	500	ns	

Switching Characteristics: $V_{\text{CCA}}=1.8V\pm0.15V$

	PARAMETER	CON	DITIONS	Vccb=2.5V±0.2V	VccB=3. 3V± 0. 2V	Vccb=5V± 0. 2V	UNITS
	PARAWETER	CONDITIONS		ТҮР	TYP	TYP	UNITS
_	Propagation delay	A +- D	Push-pul I dri vi ng	2.5	3.1	4.5	
†PHL	time high-to-low output	A-to-B	Open-drain driving	26. 1	26. 4	26.6	
t pLH	Propagation delay time low-to-high	A-to-B	Push-pull driving	4.2	3.7	3.6	
	output		Open-drai n dri vi ng	221	183	143	
+	Propagationdelay	D +o A	Push-pull driving	2.1	2.0	2. 2	
†PHL	time high-to-low output	B-to-A	Open-drain driving	26. 1	26. 1	26.2	
t pLH	Propagation delay	B-to-A	Push-pul I dri vi ng	1.8	1.6	1.5	
CPLN	time low-to-high output	D-to-A	Open-drain driving	173	89	66	
ten	Enable time	OE-to-A or B		25	21	19	
tdis	Disable time	OE-to-A or B		1250	1250	1250	ns
trA	Input rise time	A port	Push-pul I dri vi ng	6.9	6.1	5.6	
CIN	THE THE THE	rise time	Open-drain dri vi ng	118	39	13	
trB	Input rise time	B port	Push-pul I dri vi ng	5.8	4.8	4.1	
CIB	Triput 113e trille	rise time	Open-drai n dri vi ng	166	127	75	
+	Innut fall time	A port	Push-pul I dri vi ng	3.0	2.8	2.7	
trA	Input fall time	fall time	Open-drain driving	1.9	1.7	1.6	
+	Innut fall time	B port	Push-pul I dri vi ng	4.8	6.2	8.4	
t fB	Input fall time	fall time	0pen-drain dri vi ng	2.3	2.4	2.8	
tsk(0)	Skew(time),output	Channel-to-Channel Skew		0.5	0.5	0.5	
1.5 -	vimum datat-	Push-pu	ıll driving	21	22	24	Mb
Ma	ximum data rata	0pen-dr	ain driving	2	2	2	Mbps

Switching Characteristics: $V_{\text{CCA}}=2.5V\pm0.15V$

AOS SEMICONDUCTOR

				Vccb=2.5V±0.2V	Vccb=3. 3V± 0. 2V	Vccb=5V ± 0. 2V	
	PARAMETER	CONDITIONS _		TYP	TYP	TYP	UNITS
	Propagation delay		Push-pull dri vi ng	2.8	3.4	5.0	
† _{PHL}	time high-to-low output	A-to-B	Open-drain driving	26.3	26.5	26.6	
t pLH	Propagation delay time low-to-high	A-to-B	Push-pul I dri vi ng	2.7	2.5	2.4	
	output		Open-drain driving	198	169	131	
+	Propagation delay	D +o A	Push-pull driving	2.5	2.4	2.5	
†PHL	time high-to-low output	B-to-A	Open-drain driving	26. 4	26.5	26.6	
t PLH	Propagation delay time low-to-high	B-to-A	Push-pul I dri vi ng	2.1	2.0	1.9	
CPLH	output	D-tO-A	Open-drain driving	196	138	63	
ten	Enable time	OE-to-A or B		24	20	17	
tdis	Disable time	OE-to-A or B		1250	1250	1250	ns
trA	Input rise time	A port	Push-pul I dri vi ng	3.4	2.9	2.7	
Lra	Input rise time	rise time	0pen-drain dri vi ng	156	92	13	
trB	Input rise time	B port	Push-pull driving	4.7	3.5	2.7	
r.l.R	Triput 113e triile	rise time	0pen-drain driving	160	124	81	
tra	Input fall time	A port	Push-pull driving	5.1	5.2	5.0	
LTA	Triput rair triiie	fall time	0pen-drain driving	2.1	2.0	1.8	
trB	Innut fall tima	B port	Push-pull driving	5.0	6.4	8.7	
C1R	Input fall time	fall time	0pen-drain driving	2.0	2.2	2.8	
tsk(0)	Skew(time),output	Channel -to-Channel Skew		0.5	0.5	0.5	
Ma	vimum data rata	Push-pu	III driving	20	22	24	Mbpc
IVIA	ximum data rata	0pen-dra	ain driving	2	2	2	Mbps

Switching Characteristics: $V_{\text{CCA}}=3.3V\pm0.3V$

	PARAMETER	RAMETER CONDITIONS		Vccb=3. 3V ± 0. 2V	Vccb=5V± 0. 2V	UNITS
	PARAMETER	CONDIT	CONDITIONS		TYP	UNITS
† _{PHL}	Propagation delay time high-to-low	A-to-B	Push-pul I dri vi ng	3.6	5.1	
L PHL	output	A-10-B	0pen-drain driving	26.4	26.6	
t plh	Propagation delay time low-to-high	A-to-B	Push-pul I dri vi ng	2.3	2.1	
	output		Open-drain driving	155	109	
† _{PHL}	Propagation delay time high-to-low	B-to-A	Push-pull dri vi ng	3.1	3.3	
LPHL	output	D-10-A	Open-drain driving	26.5	26.7	
t plh	Propagation delay	B-to-A	Push-pull driving	1.9	1.8	
LPLH	time low-to-high output	D-10-A	Open-drain driving	158	87	
ten	Enable time	0E-to-A	or B	19	15	
t dis	Disable time	0E-to-A	or B	1250	1250	ns
trA	Input rise time /	A part rice time	Push-pul I dri vi ng	2.3	2.1	
LrA		A port rise time	0pen-drain dri vi ng	117	48	
trB	Input rise time	B port rise time	Push-pull dri vi ng	3.0	2.4	
CIB	Imput 1130 triilo	b port 113e trille	0pen-drai n dri vi ng	117	75	
+ o.	Input fall time	A port fall time	Push-pul I dri vi ng	8.0	7.6	
tfA	Triput rari trille	A port rail time	Open-drain driving	2. 2	2.1	
t _{fB}	Input fall time	B port fall time	Push-pull dri vi ng	8. 2	10.8	
LIR	input rair time	b port rair trille	Open-drain driving	2.1	2.4	
t _{sk(0)}	Skew(time),output	Channel -to-Ch	nannel Skew	0.5	0.5	
Ma	vimum data sata	Push-pul I	driving	23	24	Mbpc
IWIA	ximum data rata	Open-drain	dri vi ng	2	2	Mbps

Switching Characteristics: $V_{\text{CCA}}=5.0V\pm0.35V$

PARAMETER		CONDITIONS		Vccs=5V± 0. 2V	UNITS	
	PARAWE LER	CONDITIONS		TYP	UNITS	
+	Propagation delaytime	A +o D	Push-pull driving	5.6		
t PHL	high-to-low output	A-to-B	Open-drain driving	26.8		
t plH	Propagation delaytime low	A-to-B	Push-pull driving	2.0		
	-to-high output		Open-drain driving	155		
	Propagationdelay time high	D 1 - 1	Push-pull driving	5.8		
t PHL	-to-low output	B-to-A	Open-drain driving	27.5		
† _{PLH}	Propagation delaytime low	B-to-A	Push-pull driving	1.8		
LPLH	-to-high output	D-10-A	Open-drain driving	160		
ten	Enable time	OE-to-A or B		17		
t dis	Disable time	OE-to-A or B		1250	ns	
+ .	Laurent and an Aliana	A part rice time	Push-pull driving	1.9		
trA	Input rise time	A port rise time	Open-drain driving	105		
+ -	Input rice time	D port rice time	Push-pull driving	2.3		
trB	Input rise time	B port rise time	Open-drain driving	95		
+	Input fall time	A port fall time	Push-pull driving	9.0		
trA	Input fall time	A port fall time	Open-drain driving	2.6		
1	Innut foll time	D nort foll time	Push-pull driving	8.9		
tfB	Input fall time	B port fall time	Open-drain driving	2.5		
t _{sk(0)}	Skew(time),output	Channel-to-Channel Skew		0.5		
	Mayimum data sata	Push-p	Push-pull driving			
Maximum data rata		Open-drain driving		2	Mbps	

Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

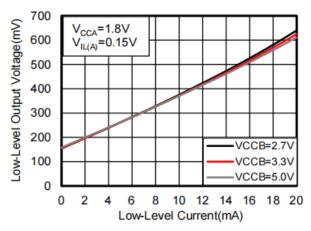


Figure1: Low-Level Output Voltage vs Low-Level Current

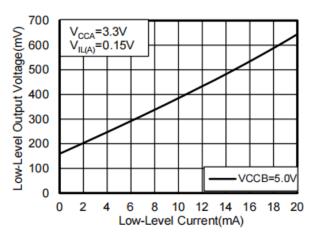


Figure3: Low-Level Output Voltage vs Low-Level Current

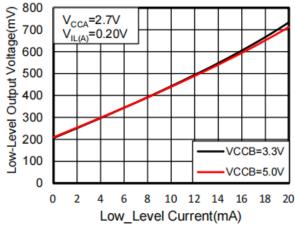


Figure5: Low-Level Output Voltage vs Low-Level Current

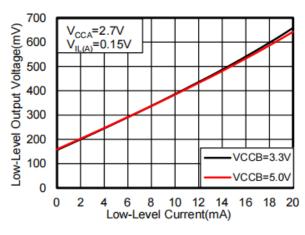


Figure2: Low-Level Output Voltage vs Low-Level Current

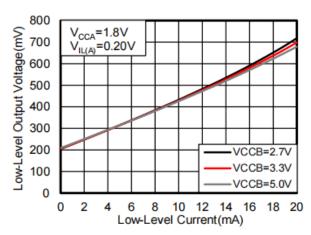


Figure4: Low-Level Output Voltage vs Low-Level Current

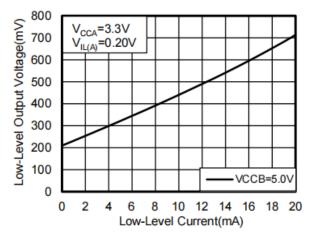


Figure6: Low-Level Output Voltage vs Low-Level Current

Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

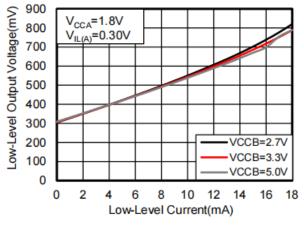


Figure7: Low-Level Output Voltage vs Low-Level Current

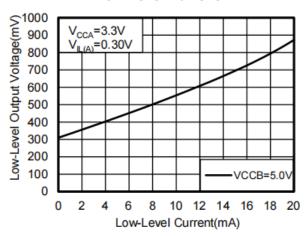


Figure9: Low-Level Output Voltage vs Low-Level Current

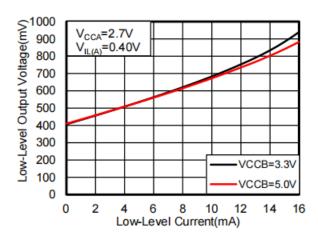


Figure11: Low-Level Output Voltage vs Low-Level Current

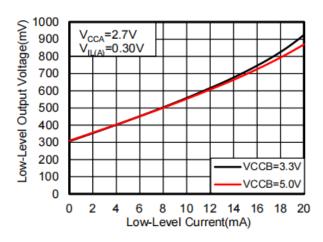


Figure8: Low-Level Output Voltage vs Low-Level Current

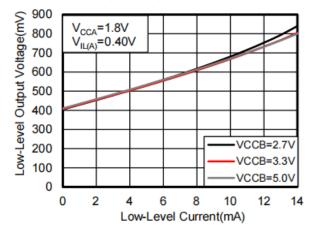


Figure 10: Low-Level Output Voltage vs Low-Level Current

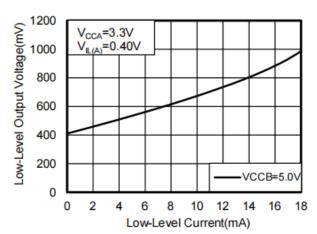


Figure12: Low-Level Output Voltage vs Low-Level Current

Typical Characteristics

NOTE: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only.

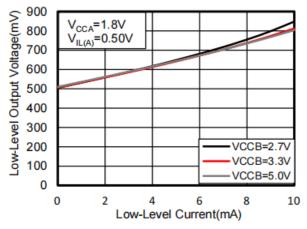


Figure 13: Low-Level Output Voltage vs Low-Level Current

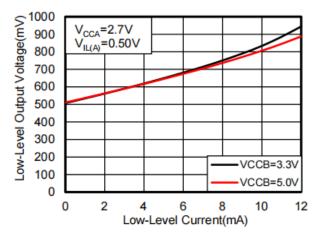


Figure14: Low-Level Output Voltage vs Low-Level Current

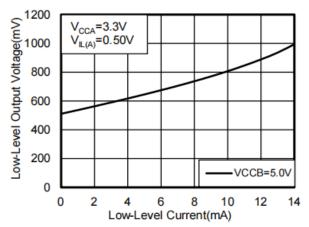


Figure15: Low-level Output Voltage vs Low-Level Current

Parameter Measurement Information

Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:

- PRR 10MHz
- Z0 = 50
- $dv/dt \ge 1V/ns$

Note: All input pulses are measured one at a time, with one transition per measurement.

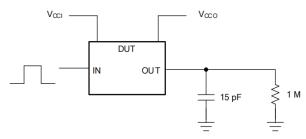


Figure 16. Data Rate, Pulse Duration, Propagation Delay, Output Rise And Fall Time Measurement Using A Push-Pull Driver

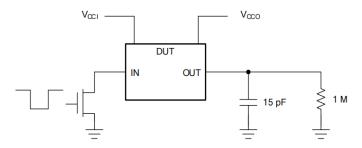


Figure 17. Data Rate, Pulse Duration, Propagation Delay, Output Rise And Fall Time Measurement Using An Open-Drain Driver

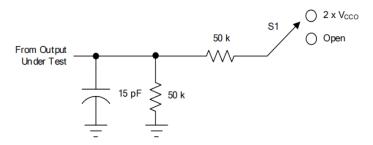
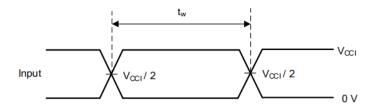



Figure 18. Load Circuit For Enable/Disable Time Measurement Table 1. Switch Configuration For Enable/Disable Timing

TEST	S1
tpzL ⁽¹⁾ , tpLz ⁽²⁾	2×Vcco
†PHZL ⁽¹⁾ , †PZH ⁽²⁾	0pen

- (1) t_{PZL} and t_{PZH} are the same as t_{en} .
- (2) tPLZ and tPHZ are the same as tdis.

(1) All input pulses are measured one at a time, with one transition per measurement.

Figure 19. Voltage Waveforms Pulse Duration

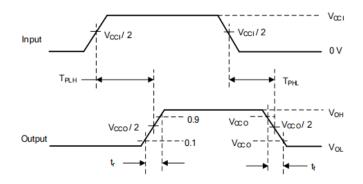


Figure 20. Voltage Waveforms Propagation Delay Times

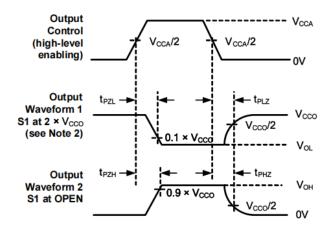


Figure 21. Voltage Waveforms Enable And Disable

Feature Description

Overvi ew

The AOSO104 device is a directionless voltage-level translator specifically designed for translating logic voltage levels. The A port is able to accept I/O voltages ranging from 1.65 V to 5.5V, while the B port can accept I/O voltages from 2.3 V to 5.5V. The device is a pass-gate architecture with edge-rate accelerators (one-shots) to improve the overall data rate. 10-k pullup resistors, commonly used in open-drain applications, have been conveniently integrated so that an external resistor is not needed. While this device is designed for open-drain applications, the device can also translate push-pull CMOS logic outputs.

Archi tecture

The AOSO104 architecture (see Figure 7) is an auto-direction-sensing based translator that does not require a direction-control signal to control the direction of data flow from A to B or from B to A. These two bidirectional channels independently determine the direction of data flow without a direction-control signal. Each I/O pin can be automatically reconfigured as either an input or an output, which is how this auto-direction feature is realized.

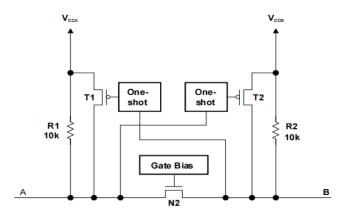


Figure 22. Architecture of a AOSO104 Cell

The AOSO104 employs two key circuits to enable this voltage translation:

- 1) An N-channel pass-gate transistor topology that ties the A-port to the B-port
- 2) Output one-shot (0.S.) edge-rate accelerator circuitry to detect and accelerate rising edges on the A or B Ports.

Input Driver Requirements

The continuous dc-current "sinking" capability is determined by the external system-level open-drain (or push-pull) drivers that are interfaced to the AOSO104 I/O pins. Since the high bandwidth of these bidirectional I/O circuits is used to facilitate this fast change from an input to an output and an output to an input, they have a modest dc-current "sourcing" capability of hundreds of micro-Amps, as determined by the internal 10-k pullup resistors. The fall time (t_{fA} , t_{fB}) of a signal depends on the edge-rate and output impedance of the external device driving AOSO104 data I/Os, as well as the capacitive loading on the data lines.

Similarly, the t_{PHL} and max data rates also depend on the output impedance of the external driver. The values for t_{FA} , t_{FB} , t_{PHL} , and maximum data rates in the data sheet assume that the output impedance of the external driver is less than 50 .

AOS0104

Feature Description Output Load Considerations

We recommend careful PCB layout practices with short PCB trace lengths to avoid excessive capacitive loading and to ensure that proper O.S. triggering takes place. PCB signal trace-lengths should be kept short enough such that the round-trip delay of any reflection is less than the one-shot duration. This improves signal integrity by ensuring that any reflection sees a low impedance at the driver. The O.S. circuits have been designed to stay on for approximately 30 ns. The maximum capacitance of the lumped load that can be driven also depends directly on the one-shot duration. With very heavy capacitive loads, the one-shot can time-out before the signal is driven fully to the positive rail. The O.S. duration has been set to best optimize trade-offs between dynamic $I\alpha$, load driving capability, and maximum bit-rate considerations. Both PCB trace length and connectors add to the capacitance that the AOSO104 device output sees, so it is recommended that this lumped-load capacitance be considered to avoid 0. contention, output signal oscillations, or other adverse S. retriggering, bus systemlevel affects.

Enable and Disable

The AOSO104 device has an OE input that is used to disable the device by setting OE low ,which places all I/Os in the Hi-Z state. The disable time ($t_{\rm dis}$) indicates the delay between the time when OE goes low and when the outputs are disabled (Hi-Z). The enable time ($t_{\rm en}$) indicates the amount of time the user must allow for the oneshot circuitry to become operational after OE is taken high.

Pullup or Pulldown Resistors on I/O Lines

Each A-port I/O has an internal 10-k pullup resistor to V_{CCA} , and each B-port I/O has an internal 10-k pullup resistor to V_{CCB} . If a smaller value of pullup resistor is required, an external resistor must be added from the I/O to V_{CCA} or V_{CCB} (in parallel with the internal 10-k resistors). Adding lower value pull-up resistors will affect V_{OL} levels, however. The internal pull-ups of the AOSO104 are disabled when the OE pin is low.

Application and Implementation

Information in the following applications sections is not part of the AOS component specification, and AOS does not warrant its accuracy or completeness. AOS's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

The AOSO104 device can be used to bridge the digital-switching compatibility gap between two voltage nodes to successfully interface logic threshold levels found in electronic systems. It should be used in a point-to-point to pology for interfacing devices or systems operating at different interface voltages with one another. Its primary target application use is for interfacing with open-drain drivers on the data I/Os such as I2C or 1-wire, where the data is bidirectional and no control signal is available. The device can also be used in applications where a push-pull driver is connected to the data I/Os, but the AOSO104 might be a better option for such push-pull applications.

Typical Application

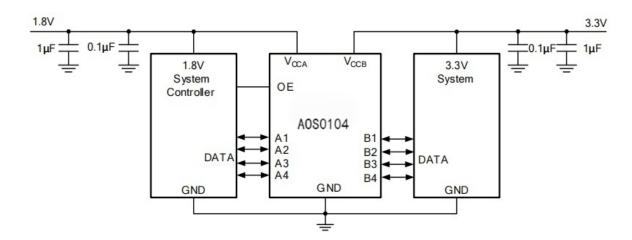
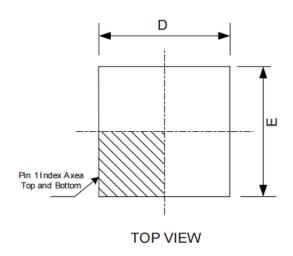
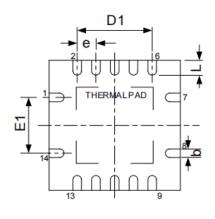
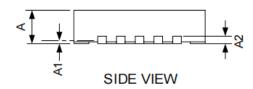
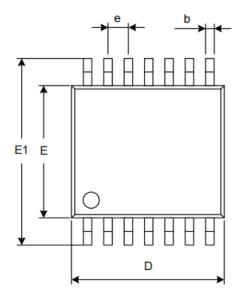
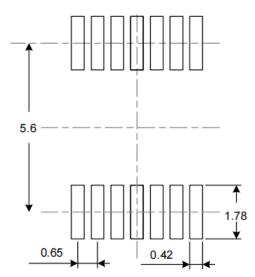




Figure 23. Typical Application Circuit

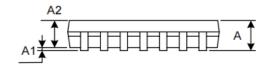


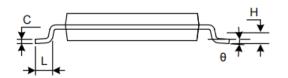
PACKAGE OUTLINE DIMENSIONS QFN3.5x3.5-14L


BOTTOM VIEW

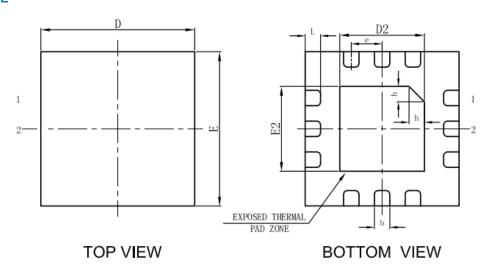


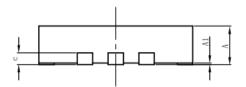
Symbol	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Mi n	Max	Min	Max
А	0.700	0.900	0.028	0.035
A1	0.000	0.050	0.000	0.002
A2	0. 200 REF		0.008 REF	
b	0.180	0.300	0.007	0.012
D	3.350	3. 650	0.132	0.144
D1	2.000) TYP	0.079 TYP	
E	3.350	3.650	0.007	0.012
E1	1.500 TYP		0.059 TYP	
е	0.500 TYP		0.020 TYP	
L	0.300	0.500	0.012	0.020




TSSOP-14

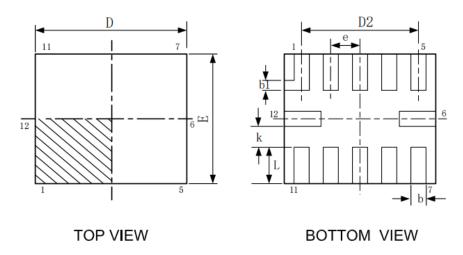
RECOMMENDED LAND PATTERN (Unit: mm)

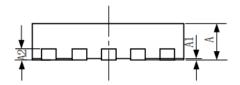




Symbol	Dimensions Ir	n Millimeters	Dimensions In Inches	
Symbol	Mi n	Max	Min	Max
Α		1. 200		0.047
A1	0.050	0.150	0.002	0.006
A2	0.800	1.050	0.031	0.041
b	0.190	0.300	0.007	0.012
С	0.090	0.200	0.004	0.008
D	4.860	5. 100	0. 191	0. 201
E	4. 300	4.500	0.169	0.177
E1	6. 250	6. 550	0. 246	0. 258
е	0.650	(BSC)	0.026(BSC)	
L	0.500	0.700	0.020	0.028
Н	0. 250(TYP)		0.010(TYP)	
	1°	7°	1°	7°

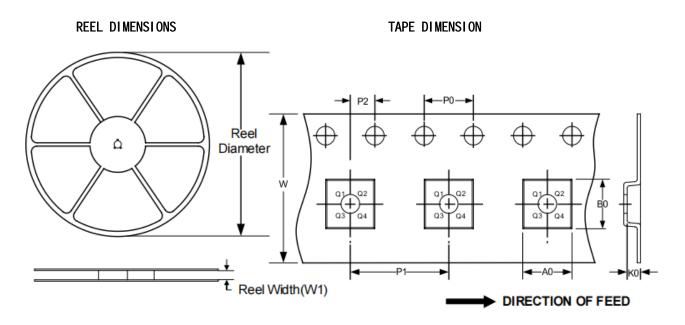
QFN2x2-12L




SIDE VIEW

Symbol	Dimensions In	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Mi n	Max	
А	0.450	0.550	0.018	0.022	
A1	0.000	0.050	0.000	0.002	
С	0.100	0.200	0.004	0.008	
b	0. 150	0. 250	0.006	0.010	
D	1. 900	2. 100	0.075	0.083	
E	1. 900	2. 100	0.075	0.083	
D2	1.000	1. 200	0.039	0.057	
E2	1.000	1. 200	0.039	0.057	
е	0.400 BSC		0.016 BSC		
h	0.150	0. 250	0.006	0.010	
L	0.150	0. 250	0.006	0.010	

QFN2x1.7-12L



Symbol	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Mi n	Max	Min	Max
А	0.450	0.550	0.018	0.022
A1	0.000	0.050	0.000	0.002
A2	0. 152	2 REF	0.006 REF	
D	1. 900	2. 100	0.075	0.083
E	1.600	1.800	0.063	0.071
D2	1.500	1.700	0.059	0.067
b	0.150	0. 250	0.006	0.010
b1	0. 150) REF	0.006 REF	
k	0.250 REF		0.010 REF	
е	0.400 BSC		0.016 BSC	
L	0.400	0.600	0.016	0.024

NOTE:

- A. All linear dimension is in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Moldflash and protrusion shall not exceed 0.15 per side.
- D. BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- E.REF: Reference Dimension, usually without tolerance, for information purposes only.

TAPE AND REEL INFORMATION

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Di ameter	Reel Width (mm)	AO (mm)	BO (mm)	KO (mm)	PO (mm)	P1 (mm)	P2 (mm)	W (mm)	Pi n1 Quadrant
QFN3.5x3.5-14L	13' '	12.4	3.80	3.80	1. 10	4.0	8.0	2.0	12.0	Q1
TSSOP-14	13' '	12.4	6. 95	5.60	1. 20	4.0	8.0	2.0	12.0	Q1
QFN1.7x2-12L	7' '	9.0	1. 90	2. 30	0. 75	4.0	4.0	2.0	8.0	Q1
QFN2x2-12L	7' '	9.0	2.13	2.13	0.88	4.0	4.0	2.0	8.0	Q1

NOTE:

- 1. All dimensions are nominal.
- 2. Plastic or metal protrusions of 0.15mm maximum per side are not included.